Skip to main content
Log in

Synthesis and Metathesis Polymerization of New Monomer 7-Trimethylsilyltricyclo[4.2.2.02,5]deca-3,9-diene

  • POLYMERIZATION
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

The reaction of 1,3,5,7-cyclooctatetraene with silicon-substituted ethylenes has been studied for the first time. It is shown that vinyltrimethylsilane is inactive in the reaction, and vinyltrichlorosilane forms 7-trichlorosilyltricyclo[4.2.2.02,5]deca-3,9-diene in up to 12% yield. A new silicon-substituted monomer 7‑trimethylsilyltricyclo[4.2.2.02,5]deca-3,9-diene containing 92% of the endo-isomer has been synthesized by methylation of the chloroadduct. The metathesis polymerization of the final monomer mediated by the Grubbs Ru catalysts of the first and second generations is studied. A new poly(7-trimethylsilyltricyclo[4.2.2.02,5]deca-3,9-diene) containing a bulky bicyclic fragment and predominantly trans-double bonds in the main chain (up to 94%) is obtained in 90–96% yields. The polymer is characterized by the highest glass transition point (187°C) in the series of monotrimethylsilyl-substituted polynorbornenes. The double bonds present in the monomer unit open up prospects for further modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. B. R. Elling, J. K. Su, and Y. Xia, Acc. Chem. Res. 54, 356 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. R. B. Grubbs and R. H. Grubbs, Macromolecules 50, 6979 (2017).

    Article  CAS  Google Scholar 

  3. J. Mol, J. Mol. Catal. A: Chem. 213, 39 (2004).

    Article  CAS  Google Scholar 

  4. M. Yamazaki, J. Mol. Catal. A: Chem. 213, 81 (2004).

    Article  CAS  Google Scholar 

  5. C. Janiak and P. G. Lassahn, J. Mol. Catal. A: Chem. 166, 193 (2001).

    Article  CAS  Google Scholar 

  6. V. R. Flid, M. L. Gringolts, R. S. Shamsiev, and E. S. Finkelshtein, Russ. Chem. Rev. 87, 1169 (2018).

    Article  CAS  Google Scholar 

  7. A. H. Farquhar, M. Brookhart, and A. J. M. Miller, Polym. Chem. 11, 2576 (2020).

    Article  CAS  Google Scholar 

  8. V. Petrov and N. Vasil’ev, Curr. Org. Synth. 3, 215 (2006).

    Article  CAS  Google Scholar 

  9. E. S. Finkelshtein, P. P. Chapala, M. L. Gringolts, and Y. V. Rogan, Polym. Sci., Ser. C 61, 17 (2019).

    Article  CAS  Google Scholar 

  10. C. Slugovc, “Industrial Applications of Olefin Metathesis Polymerization,” in Olefin Metathesis, Ed. by K. Grela (Wiley, Hoboken, 2014), p. 329.

    Google Scholar 

  11. M. V. Bermeshev and P. P. Chapala, Prog. Polym. Sci. 84, 1 (2018).

    Article  CAS  Google Scholar 

  12. S. Kovačič and C. Slugovc, Mater. Chem. Front. 4, 2235 (2020).

    Article  Google Scholar 

  13. F. Blank and C. Janiak, Coord. Chem. Rev. 253, 827 (2009).

    Article  CAS  Google Scholar 

  14. Handbook of Metathesis, Ed. by R. H. Grubbs and E. Khosravi (Wiley, Weinheim, 2015), Vol. 3.

    Google Scholar 

  15. M. V. Bermeshev and E. S. Finkelshtein, INEOS Open 1, 39 (2018).

    Article  CAS  Google Scholar 

  16. E. S. Finkelshtein, M. L. Gringolts, M. V. Bermeshev, P. P. Chapala, and Y. V. Rogan, in Membrane Materials for Gas and Vapor Separation (Wiley, Chichester, 2017), p. 143.

    Google Scholar 

  17. Y. Yampolskii, L. Starannikova, N. Belov, M. Bermeshev, M. Gringolts, and E. Finkelshtein, J. Membr. Sci. 453, 532 (2014).

    Article  CAS  Google Scholar 

  18. D. A. Alentiev, E. S. Egorova, M. V. Bermeshev, L. E. Starannikova, M. A. Topchiy, A. F. Asachenko, P. S. Gribanov, M. S. Nechaev, Y. P. Yampolskii, and E. S. Finkelshtein, J. Mater. Chem. A 6, 19393 (2018).

    Article  CAS  Google Scholar 

  19. G. O. Karpov, M. V. Bermeshev, I. L. Borisov, S. R. Sterlin, A. A. Tyutyunov, N. P. Yevlampieva, B. A. Bulgakov, V. V. Volkov, and E. S. Finkelshtein, Polymer 153, 626 (2018).

    Article  CAS  Google Scholar 

  20. G. O. Karpov, I. L. Borisov, A. V. Volkov, E. S. Finkelshtein, and M. V. Bermeshev, Polymers 12, 1282 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  21. G. O. Karpov, D. A. Alentiev, A. I. Wozniak, E. V. Bermesheva, I. V. Lounev, Y. A. Gusev, V. P. Shantarovich, and M. V. Bermeshev, Polymer 203, 122759 (2020).

    Article  CAS  Google Scholar 

  22. E. V. Bermesheva, D. A. Alentiev, A. P. Moskalets, and M. V. Bermeshev, Polym. Sci., Ser. B 61, 314 (2019).

    Article  CAS  Google Scholar 

  23. A. A. Morontsev, V. A. Zhigarev, R. Y. Nikiforov, N. A. Belov, M. L. Gringolts, E. S. Finkelshtein, and Y. P. Yampolskii, Eur. Polym. J. 99, 340 (2018).

    Article  CAS  Google Scholar 

  24. W. Reppe, O. Schlichting, K. Klager, and T. Toepel, Justus Liebigs Ann. Chem. 560, 1 (1948).

    Article  CAS  Google Scholar 

  25. M. Avram, C. D. Nenitzescu, and E. Marica, Chem. Ber. 90, 1857 (1957).

    Article  CAS  Google Scholar 

  26. R. D. Miller and D. Dolce, Tetrahedron Lett. 13, 4541 (1972).

    Article  Google Scholar 

  27. L. A. Paquette, M. Oku, W. E. Heyd, and R. H. Meisinger, J. Am. Chem. Soc. 96, 5815 (1974).

    Article  CAS  Google Scholar 

  28. W. G. Dauben, G. T. Rivers, R. J. Twieg, and W. T. Zimmerman, Org. Chem. 41, 887 (1976).

    Article  CAS  Google Scholar 

  29. E. Osawa, K. Aigami, and Y. Inamoto, J. Org. Chem. 42, 2621 (1977).

    Article  CAS  Google Scholar 

  30. R. D. Miller, D. L. Dolce, and V. Y. Merritt, J. Org. Chem. 41, 1221 (1976).

    Article  CAS  Google Scholar 

  31. B. Albert, C. Heller, R. Iden, G. Martin, H.-D. Martin, B. Mayer, and A. Oftring, Isr. J. Chem. 25, 74 (1985).

    Article  CAS  Google Scholar 

  32. M. Avram, E. Sliam, and C. D. Nenitzescu, Justus Liebigs Ann. Chem. 636, 184 (1960).

    Article  CAS  Google Scholar 

  33. R. Huisgen and F. Mietzsch, Angew. Chem. 76, 36 (1964).

    Article  CAS  Google Scholar 

  34. R. S. H. Liu and C. G. Krespan, J. Org. Chem. 34, 1271 (1969).

    Article  CAS  Google Scholar 

  35. R. Charvet and B. M. Novak, Macromolecules 34, 7680 (2001).

    Article  CAS  Google Scholar 

  36. J. H. Edwards and W. J. Feast, Polymer 21, 595 (1980).

    Article  CAS  Google Scholar 

  37. J. H. Edwards, W. J. Feast, and D. C. Bott, Polymer 25, 395 (1984).

    Article  CAS  Google Scholar 

  38. W. J. Feast, M. J. Taylor, and J. N. Winter, Polymer 28, 593 (1987).

    Article  CAS  Google Scholar 

  39. C. A. Jones, R. A. Lawrence, J. Martens, R. H. Friend, D. Parker, W. J. Feast, M. Lögdlund, and W. R. Salaneck, Polymer 32, 1200 (1991).

    Article  CAS  Google Scholar 

  40. L. Y. Park, R. R. Schrock, S. G. Stieglitz, and W. E. Crowe, Macromolecules 24, 3489 (1991).

    Article  CAS  Google Scholar 

  41. R. Charvet, S. Acharya, J. P. Hill, M. Akada, M. Liao, S. Seki, Y. Honsho, A. Saeki, and K. Ariga, J. Am. Chem. Soc. 131, 18030 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. W. Fischer, F. Stelzer, C. Heller, and G. Leising, Synth. Met. 55, 815 (1993).

    Article  CAS  Google Scholar 

  43. K. O. Kim and T.-L. Choi, Macromolecules 46, 5905 (2013).

    Article  CAS  Google Scholar 

  44. K.-Y. Yoon, S. Shin, Y.-J. Kim, I. Kim, E. Lee, and T.‑L. Choi, Macromol. Rapid Commun. 36, 1069 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. R. Charvet and B. M. Novak, Macromolecules 37, 8808 (2004).

    Article  CAS  Google Scholar 

  46. F. Stelzer, J. K. Brunthaler, G. Leising, and K. Hummel, J. Mol. Catal. 36, 135 (1986).

    Article  CAS  Google Scholar 

  47. K. O. Kim, S. Shin, J. Kim, and T. L. Choi, Macromolecules 47, 1351 (2014).

    Article  CAS  Google Scholar 

  48. J.-A. Song, B. Park, S. Kim, C. Kang, D. Lee, M.‑H. Baik, R. H. Grubbs, and T.-L. Choi, J. Am. Chem. Soc. 141, 10039 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. S. Shin, K.-Y. Yoon, and T.-L. Choi, Macromolecules 48, 1390 (2015).

    Article  CAS  Google Scholar 

  50. S. Rajaram, T.-L. Choi, M. Rolandi, and J. M. J. Frechet, J. Am. Chem. Soc. 129, 9619 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. V. A. Zhigarev, A. A. Morontsev, R. Y. Nikiforov, M. L. Gringolts, N. A. Belov, N. G. Komalenkova, V. G. Lakhtin, and E. S. Finkelshtein, Polym. Sci., Ser. C 61, 107 (2019).

    Article  CAS  Google Scholar 

  52. W. Adam, O. Cueto, and O. De Lucchi, Org. Chem. 45, 5220 (1980).

    Article  CAS  Google Scholar 

  53. R. Huisgen and G. Boche, Tetrahedron Lett. 6, 1769 (1965).

    Article  Google Scholar 

  54. L. Kelebekli, Y. Kara, and M. Balci, Carbohydr. Res. 340, 1940 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. A. Karanfil, E. Şahin, and L. Kelebekli, Tetrahedron 76, 131000 (2020).

    Article  CAS  Google Scholar 

  56. E. Vogel, H. Kiefer, and W. R. Roth, Angew. Chemie 76, 432 (1964).

    Google Scholar 

  57. H. E. Zimmerman and H. Iwamura, J. Am. Chem. Soc. 92, 2015 (1970).

    Article  CAS  Google Scholar 

  58. V. A. Dyakonov, G. N. Kadikova, G. F. Gazizullina, L. M. Khalilov, U. M. Dzhemilev, Tetrahedron Lett. 56, 2005 (2015).

    Article  CAS  Google Scholar 

  59. A. A. Morontsev, M. L. Gringolts, M. P. Filatova, and E. S. Finkelshtein, Polym. Sci., Ser. B 58, 695 (2016).

    Article  CAS  Google Scholar 

  60. M. L. Gringolts, M. V. Bermeshev, A. V. Syromolotov, L. E. Starannikova, M. P. Filatova, K. L. Makovetskii, and E. S. Finkelshtein, Pet. Chem. 50, 352 (2010).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The structure of the compounds obtained was studied using equipment from the Center for Collective Use Analytical Center of Problems for Advanced Refining of Oil and Petrochemistry, Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, and Center of Investigation of Molecule Structure, Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences.

We are grateful to R.S. Borisov, Ya.I. Derikov, and G.A. Shandryuk (Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences) for assistance in analysis of polymers and A.S. Peregudov (Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences) for 13C NMR and 29Si NMR spectrum registration and two-dimensional NMR spectra.

Funding

The reported study was funded by RFBR according to the research project no. 20-33-90158.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Zhigarev.

Additional information

Translated by K. Aleksanyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhigarev, V.A., Gringolts, M.L., Filatova, M.P. et al. Synthesis and Metathesis Polymerization of New Monomer 7-Trimethylsilyltricyclo[4.2.2.02,5]deca-3,9-diene. Polym. Sci. Ser. B 63, 470–479 (2021). https://doi.org/10.1134/S1560090421050195

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090421050195

Navigation