Skip to main content
Log in

New Data for Malanite and Cuprorhodsite from Chromitites of the Bushveld Complex, South Africa

  • MINERALS AND MINERAL PARAGENESES
  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The 3D-mineralogical technology was used to study a representative selection of grains of thiospineles from three groups of chromitite horizons (lower LG6, middle MG1/MG2 and upper UG2): 46 grains of malanite (4–42 μm) and 34 grains of cuprorhodsite (9–42 μm). Their microprobe analysis was performed (n = 61). The statistics for this selection of grains have resulted in the following formulas: for malanite, (Сu2+,Fe2+)(Pt3+Rh3+,Ir3+,Co3+,Ni3+Fe3+)2S4 and for cuprorhodsite, (Сu2+,Fe2+)(Rh3+,Pt3+,Ir3+,Fe3+)2S4. According to morphological properties and their relationship with platinum-group minerals (PGMs) and base metal sulfides, thiospinel can be attributed to the earliest primary PGMs in chromitites. The distribution of cuprorhodsite and malanite in chromitites was controlled by the Rayleigh fractionation of the primary sulfide melt in the process of formation of Bushveld chromitite horizons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. The considered thiospineles were not found among PGMs of two broadly studied samples from the Merensky reef (from the western and eastern parts of the Bushveld Complex).

  2. ECD is the equivalent diameter of a circle whose area is equal to the area of the cross-section of the grain.

  3. The amount of sulfides in flotation concentrates is higher than in primary chromitites, while the ratio of sulfides practically does not change.

REFERENCES

  1. Ballhaus, C. and Ryan, C.G., Platinum-group elements in the Merensky Reef. I. PGE in solid solution in base metal sulfides and the down-temperature equilibration history of Merensky ores, Contrib. Mineral. Petrol., 1995, vol. 122, no. 3, pp. 241–251.

    Article  Google Scholar 

  2. Cabri, L.J., Rudashevsky, N.S., Rudashevsky, V.N., and Lastra, R., Hydroseparation: a new development in process mineralogy of platinum-bearing ores, CIM Bull., 2006, vol. 99, no. 1092, pp. 1–7.

    Google Scholar 

  3. Cabri, L.J., Rudashevsky, N.S., Rudashevsky, V.N., and Oberthur, T., Electric-pulse disaggregation (EPD), hydroseparation (HS) and their use in combination for mineral processing and advanced characterization of ores, Canad. Miner. Processors 40th Annual Meeting, Ottawa, 2008, pp. 211–235.

  4. Cawthorn, R.G., Platinum-group element mineralization in the Bushveld Complex – a critical reassessment of geochemical models, S. Afr. J. Geol, 1999, vol. 102, pp. 268–281.

    Google Scholar 

  5. Cawthorn, R.G., Geological investigations of the PGE distribution in the Bushveld Merensky and UG2 chromite reefs, J. South Afr. Inst. Min. Metall., 2011, vol. 111, pp. 67–79.

    Google Scholar 

  6. Cawthorn, R.G., Lee, C.A., Schouwstra, R.P., and Mellowship, P., Relationship between PGE and PGM in the Bushveld Complex, Can. Mineral., 2002, vol. 40, pp. 311–328.

    Article  Google Scholar 

  7. Holwell, D.A. and McDonald, I., A review of the behavior of platinum group elements within natural magmatic sulfide ore systems, Platin. Met. Rev., 2010, vol. 54, pp. 26–36.

    Article  Google Scholar 

  8. Junge, M., Oberthur, T., and Melcher, F., Cryptic variation of chromite chemistry, platinum-group-element and mineral distribution in the UG-2 chromitite—an example from the Karee Mine, western Bushveld Complex, South Africa. Econ. Geol. 2014. Vol. 109. P. 795—810.

  9. Kinloch, E.D., Regional trends in the platinum-group mineralogy of the critical zone of the Bushveld Complex, South Africa, Econ. Geol., 1982, vol. 77, pp. 1328–1347.

    Article  Google Scholar 

  10. Lee, C.A., A review of mineralization in the Bushveld complex and some other layered intrusions, In: Layered Intrusions, Cawthorn, R.G., Ed., Amsterdam: Elsevier, 1996, pp. 103–145.

    Google Scholar 

  11. McLaren, C.H. and De Villiers, J.P.R., The platinum-group chemistry and mineralogy of the UG2 chromitite layer of the Bushveld Complex, Econ. Geol., 1982, vol. 77, pp. 348–136.

    Article  Google Scholar 

  12. Naldrett, A., Kinnaird, J., Wilson, A., Yudovskaya, M., McQuade, S., Chunnett, G., and Stanley, C., Chromite composition and PGE content of Bushveld chromitites: part 1 – the lower and middle groups, Appl. Earth Sci., 2009, vol. 118, pp. 131–161.

    Article  Google Scholar 

  13. Naldrett, A. and von Gruenewaldt, G., Association of platinum-group elements with chromitite in layered intrusions and ophiolite complexes, Econ Geol, 1989, vol. 84, pp. 180–187.

    Article  Google Scholar 

  14. Naldrett, A., Wilson, A., Kinnaird, J., Yudovskaya, M., and Chunnett, G., The origin of chromites and related PGE mineralization in the Bushveld Complex: new mineralogical and petrological constraints, Miner. Deposita, 2012, vol. 47, pp. 209–232.

    Article  Google Scholar 

  15. Oberthür, T., Melcher, F., Sitnikova, M., Rudashevsky, N.S., Rudashevsky, V.N., Cabri, L.J., Lodziak, J., Klosa, D., and Gast, L., Combination of novel mineralogical methods in the study of noble metal ores - focus on pristine (Bushveld, Great Dyke) and placer platinum mineralization, Proc. 9th Int. Congress Applied Miner, Brisbane: QLD, 2008, pp. 187–194.

  16. Oberthür, T., Junge, M., Rudahevsky, N., de Meyer, E., and Gutter, P., Platinum-group minerals in the LG and MG chromitites of the Bushveld Complex, South Africa, Miner. Deposita, 2016, vol. 51, pp. 71–87.

    Article  Google Scholar 

  17. Osbahr, I., Oberthür, T., Klemd, R., and Josties, A., Platinum-group element distribution in base-metal sulfides of the UG2, Bushveld Complex, South Africa—a reconnaissance study, Miner. Deposita, 2014, vol. 49, pp. 655–665.

    Article  Google Scholar 

  18. Penberthy, C.J., Oosthuyzen, E.J., and Merkle, R.K.W., The recovery of platinum-group elements from the UG2 chromitite—a mineralogical perspective, Mineral. Petrol., 2000, vol. 68, pp. 213–222.

    Article  Google Scholar 

  19. Rudashevsky, N.S., Men’shikov, Yu.P., Mochalov, A.G., Trubkin, N.V., Shumskaya, N.I., and Zhdanov, V.V., Cuprorhodsite CuRh2S4 and cuproiridsite CuIr2S4—new natural thiospinels of platinum-group elements, Zap. Vsesoyuz. Mineral. O-va, 1985, vol. 114, pp. 187–195.

    Google Scholar 

  20. Rudashevsky, N.S., Rudashevsky, V.N., and Lupal, S.D., The Method of Separating Granular Materials and Device for Carrying Out Said Method. Patent Cooperation Treaty PCT/RU01/00123 on the Basis of Russian Patent no. 2165300, Moscow: 2001.

  21. Rudashevsky, N.S. and Rudashevsky, V.N., Hydraulic Classifier. RF Patent No. 2281808 (2006).

  22. Rudashevsky, N.S. and Rudashevsky, V.N., Hydraulic Classifier. RF Patent No. 69418 (2007).

  23. Rudashevsky N.S., Rudashevsky V.N. 3D mineralogical technology for investigation of ores and process products from precious metal primary deposits, In: Mat. Yubileinogo S’ezda Ross. Mineral. O-va “200 let RMO” (Proc. 200th Anniversary Meeting Russian Miner. Soc.) St. Petersburg: 2017, vol. 2, pp. 146–148.

  24. Rudashevsky, N.S., Rudashevsky, V.N., and Antonov, A.V., Universal mineralogical technology for study of rocks, ores, and processing products, Regional Geol. Metallogen., 2018, no. 73, pp. 88–102.

  25. Scoon, R. N. and Teigler, B., Platinum-group element mineralization in the critical zone of the Western Bushveld Complex: I. Sulfide poor-chromitites below the UG-2, Econ. Geol., 1994, vol. 89, pp. 1094–1112.

  26. Vermaak, C., The Platinum-Group Metals—a Global Perspective, MINTEK, 1995.

    Google Scholar 

  27. Von Gruenewaldt, G., Hatton, C. J., Merkle, R. K. W., and Gain, S. B., Platinum-group element-chromite associations in the Bushveld Complex, Econ. Geol., 1986, vol. 81, pp. 1067–1079.

    Article  Google Scholar 

  28. Voordouw, R., Gutzmer, J., and Beukes, N.J., Zoning of platinum group mineral assemblages in the UG2 chromitite determined through in situ SEM-EDS-based image analysis, Miner. Deposita, 2010, vol. 45, pp. 147–159.

    Article  Google Scholar 

  29. Yu, Zuxiang, Malanite—a new cupric platinum (Pt3+) and iridium (Ir3+) sulfide, Acta Geol. Sinica., 1996, vol. 70, no. 4, pp. 309–314.

    Google Scholar 

  30. Yu, Zuxiang, A restudy of malanite and cobalt–malanite (dayingite), Geol. Rev., 1981, vol. 27, pp. 55–71.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are sincerely grateful to Dr. T. Oberthür and Dr. I.V. Veksler for the samples from Bushveld chromitites presented for research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Rudashevsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudashevsky, N.S., Rudashevsky, V.N. New Data for Malanite and Cuprorhodsite from Chromitites of the Bushveld Complex, South Africa. Geol. Ore Deposits 62, 796–802 (2020). https://doi.org/10.1134/S1075701520080139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701520080139

Keywords:

Navigation