Skip to main content
Log in

Fused pyrimidine systems: XVII. Arylsulfenylation of 5-allylpyrimidine-4(3H)-one derivatives. Synthesis of arylsulfanyl-substituted 5,6-dihydrofuro[2,3-d]- and 6,7-dihydro-5H-pyrano[2,3-d]pyrimidines

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

5-Allylpyrimidine-4-ones react with arylsulfenyl chlorides in dichloromethane with the formation of 5-[(2-arylsulfanyl)-3-chloropropyl]-pyrimidine-4-ones that under the action of sodium acetate undergo cyclization into 6-arylsulfanyl-6,7-dihydro-5H-pyrano[2,3-d]pyrimidines. At performing similar reactions in nitromethane an intramolecular electrophilic cyclization occurs affording 6-[(arylsulfanyl)methyl]-5,6-dihydrofuro[2,3-d]pyrimidines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dyachenko, I.V., Vaskevich, R.I., Vaskevich, A.I., Shishkina, S.V., and Vovk, M.V., Russ. J. Org. Chem., 2016, vol. 52, p. 745. doi 10.1134/S1070428016050225

    Article  CAS  Google Scholar 

  2. Gangjee, A., Devraj, R., McGuire, J.J., and Kisliuk, R.L., J. Med. Chem., 1995, vol. 38, p. 3798. doi 10.1021/jm00019a009

    Article  CAS  Google Scholar 

  3. Gangjee, A., Jain, H.D., Phan, J., Guo, X., Queener, S.P., and Kisliuk, R.L., Bioorg. Med. Chem., 2010, vol. 18, p. 953. doi 10.1016/j.bmc.2009.11.029

    Article  CAS  Google Scholar 

  4. Kraljevic, T.G., Klika, M., Kralj, M., Martin-Kleiner, I., Jurmanovic, S., Milic, A., Padovan, J., and Raic-Malic, S., Bioorg. Med. Chem. Lett., 2012, vol. 22, p. 308. doi 10.1016/j.bmcl.2011.11.009

    Article  CAS  Google Scholar 

  5. Xin, M., Zhang, L., Shen, H., Wen, J., Tu, Ch., Liu, Zh., Cheng, L., and Zhao, X., Med. Chem. Res., 2014, vol. 23, p. 3784. doi 10.1007/s00044-014-0959-3

    Article  CAS  Google Scholar 

  6. Maruoka, H., Yamagata, K., and Yamazaki, M., J. Heterocycl. Chem., 2001, vol. 38, p. 269. doi 10.1002/jhet.5570380140

    Article  CAS  Google Scholar 

  7. Maruoka, H., Okabe, F., and Yamagata, K., J. Heterocycl. Chem., 2008, vol. 45, p. 541. doi 10.1002/jhet.5570450237

    Article  CAS  Google Scholar 

  8. Sakurai, A. and Midorikawa, H., J. Org. Chem., 1969, vol. 34, p. 3612. doi 10.1021/jo01263a086

    Article  CAS  Google Scholar 

  9. Eiden, F. and Rademacher, G., Arch. Pharm., 1983, vol. 316, p. 34. doi 10.1002/ardp.19833160109

    Article  CAS  Google Scholar 

  10. Eiden, F. and Rademacher, G., Arch. Pharm., 1985, vol. 318, p. 926. doi 10.1002/ardp.19853181013

    Article  CAS  Google Scholar 

  11. Nyiondi-Bonguen, E., Fondjo, E.S., Fomum, Z.T., and Döpp, D., J. Chem. Soc., Perkin Trans. 1, 1994, p. 2191. doi 10.1039/P19940002191

    Google Scholar 

  12. Melik-Ohanjanyan, R.G., Gapoyan, A.S., Khachatrayn, B.E., Mirzoyan, V.S., Manukyan, Zh.S., and Papoyan, S.A., Arm. Khim. Zh., 1980, vol. 33, p. 1020.

    Google Scholar 

  13. Gapoyan, A.S., Mirzoyan, V.S., Khachatrayn, B.E., and Melik-Ohanjanyan, R.G., Arm. Khim. Zh., 1987, vol. 41, p. 339.

    Google Scholar 

  14. Gangjee, A., Zeng, Y., Talreja, T., McCuire, J.J., and Kisliuk, R.L., J. Med. Chem., 2007, vol. 50, p. 3046. doi 10.1021/jm070165j

    Article  CAS  Google Scholar 

  15. Gangjee, A., Qiu, Y., Li, W., and Kisliuk, R.L., J. Med. Chem., 2008, vol. 51, p. 5789. doi 10.1021/jm8006933

    Article  CAS  Google Scholar 

  16. Zhang, J., Zhan, P., Wu, J., Li, Zh., Jiang, Y., Ge, W., Pannecouque, C., De Clercq, E., and Liu, X., Biooorg. Med. Chem., 2011, vol. 19, p. 4366. doi 10.1016/j.bmc.2011.05.024

    Article  CAS  Google Scholar 

  17. Rasteikiene, L., Greiciute, D., Lin’kova, M.G., and Knunyants, I.L., Russ. Chem. Rev., 1977, vol. 46, p. 548. doi 10.1070/RC1977v046n06ABEH002155

    Article  Google Scholar 

  18. Tsizorik, N.M., Vas’kevich, A.I., Rusanov, E.B., and Vovk, M.V., Russ. J. Org. Chem., 2014, vol. 50, p. 1397. doi 10.1134/S1070428014100029

    Article  CAS  Google Scholar 

  19. Naganuma, K., Omura, A., Maekawara, N., Saitoh, M., Ohkawa, N., Kubota, T., Nagumo, H., Kodama, T., Takemura, M., Ohtsuka, Y., Nakamura, J., Tsujita, R., Kawasaki, K., Yokoi, H., and Kawanishi, M., Bioorg. Med. Chem. Lett., 2009, vol. 19, p. 3174. doi 10.1016/j.bmcl.2009.04.121

    Article  CAS  Google Scholar 

  20. Johnson, T.B. and Hill, A.V., J. Am. Chem. Soc., 1914, vol. 36, p. 364. doi 10.1021/ja02179a016

    Article  Google Scholar 

  21. Hach, V., Chem. Listy, 1951, vol. 45, p. 459.

    CAS  Google Scholar 

  22. Botta, M., Cavalieri, M., Ceci, D., De Angelis, F., Finizia, G., and Nicoletti, R., Tetrahedron, 1984, vol. 40, p. 3313. doi 10.1016/0040-4020(84)85016-4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Vas’kevich.

Additional information

Original Russian Text © А.I. Vas’kevich, М.V. Vovk, 2017, published in Zhurnal Organicheskoi Khimii, 2017, Vol. 53, No. 2, pp. 271–276.

For communication XVI, see [1].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vas’kevich, A.I., Vovk, M.V. Fused pyrimidine systems: XVII. Arylsulfenylation of 5-allylpyrimidine-4(3H)-one derivatives. Synthesis of arylsulfanyl-substituted 5,6-dihydrofuro[2,3-d]- and 6,7-dihydro-5H-pyrano[2,3-d]pyrimidines. Russ J Org Chem 53, 270–276 (2017). https://doi.org/10.1134/S1070428017020221

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428017020221

Navigation