Skip to main content
Log in

Bioinformatics Study of Pioglitazone Analogues as Potential Anti-Diabetic Drugs

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

The challenges of the twenty-first century for the pharmaceutical industry are to deliver new and safe medicines within a short period of time. Novel drug discovery is a complex and expensive process with decades of the venture. With the present technologies and inventions, the task is much faster in recent years. Computer simulations give the dynamic picture of the reactions along with the potential drug molecule. Diabetes is a carbohydrate disorder caused due to the effect of environment, which results in increased hepatic glucose production, decreased insulin secretion. It hinders the function of eyes, kidneys, heart, nerves and blood vessels. The most commonly available drug for diabetes involves Metformin, Sulfonylureas, Meglitinide and Thiazolidinedione which cause severe damage to internal organs and many diseases like bladder cancer, hypoglycemia, risk of liver disease and many more. Docking techniques ease the identification of potential drug molecules to specific target. The present work aims at molecular docking studies on derivatives of pioglitazone while taking pioglitazone as reference. Peroxisome Proliferator Activated Receptor gamma (PPAR-γ) was taken as receptor and the derivatives were docked by using Autodock software. Docking results showed that pioglitazone derivatives were active against PPAR-γ with enhanced binding affinity when compared to standard marketed drug i.e. Pioglitazone. Molecular docking studies on the pioglitazone derivatives indicate that they may be used as a promising antidiabetic drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Katsarou, A., Gudbjörnsdottir, S., Rawshani, A., Dabelea, D., Bonifacio, E., Anderson, B.J., Jacobsen, L.M., Schatz, D.A., and Lernmark, Å., Nat. Rev. Dis. Prim., 2017, vol. 3 (1), pp. 1–17. https://doi.org/10.1038/nrdp.2017.16

    Article  Google Scholar 

  2. Rines, A.K, Sharabi, K., Tavares, C.D., and Puigserver, P., Nat. Rev. Drug Dis., 2016, vol. 15 (11), pp. 786–804. https://doi.org/10.1038/nrd.2016.151

    Article  CAS  Google Scholar 

  3. Hsing, H.Y., Rathnasamy, S., Dianita, R., and Wahab, H.A., Biomed. Res. Ther., 2020, vol. 7 (1), pp. 3579–3592. https://doi.org/10.15419/bmrat.v7i1.585

    Article  Google Scholar 

  4. Vaishnav, Y., Dewangan, D., Verma, S., Mishra, A., Takur, A.S., Kashyap, P., and Kumar Verma, S., J. Heterocycl. Chem., 2020, vol. 57 (5), pp. 2213–2224. https://doi.org/10.1002/jhet.3941

    Article  CAS  Google Scholar 

  5. Stumvoll, M. and Häring, H.U., Ann. Med., 2002, vol. 34 (3), pp. 217–224.

    Article  CAS  Google Scholar 

  6. Kumar Celestina, S., Sundaram, K., and Ravi, S., Russ. J. Bioorg. Chem., 2019, vol. 45, pp. 405–415. https://doi.org/10.1134/S1068162019050066

    Article  Google Scholar 

  7. Hatting, M., Tavares, C.D., Sharabi, K., Rines, A.K., and Puigserver, P., Ann. N.-Y. Acad. Sci., 2018, vol. 1411 (1), pp. 21–35. https://doi.org/10.1111/nyas.13435

    Article  CAS  PubMed  Google Scholar 

  8. Stanojevic, V. and Habener, J.F., Best Pract. Res. Clin. Endocrinol. Metabol., 2015, vol. 29 (6), pp. 859–871. https://doi.org/10.1016/j.beem.2015.10.002

    Article  CAS  Google Scholar 

  9. Lee, M.A., Tan, L., Yang, H., Im, Y.G., and Im Y.J., Sci. Rep., 2017, vol. 7, article no. 16837. https://doi.org/10.1038/s41598-017-17082-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Karak, M., Bal, N.C., Bal, C., Sharon, A., Curr. Diabetes Rev., 2013, vol. 9 (4), pp. 275–285.

    Article  Google Scholar 

  11. Goldstein, B.J., Rev. Cardiovasc Med., 2003, vol. 4 (suppl. 6), pp. S3–S10.

    PubMed  Google Scholar 

  12. Bansal, G., Singh, S., Monga, V., Thanikachalam, P.V., and Chawla, P., Bioorg. Chem., 2019, vol. 92, pp. 103271. https://doi.org/10.1016/j.bioorg.2019.103271

    Article  CAS  PubMed  Google Scholar 

  13. Guest, P.C., Ed., Reviews on Biomarker Studies of Metabolic and Metabolism-Related Disorders (Advances in Experimental Medicine and Biology, volume 1134), Springer Cham., 2019. https://doi.org/10.1007/978-3-030-12668-1

  14. Yekta, R., Dehghan, G., Rashtbari, S., Sheibani, N., and Moosavi-Movahedi, A.A., J. Mol. Recognit., 2017, vol. 30 (12), p. e2648. https://doi.org/10.1002/jmr.2648

    Article  CAS  Google Scholar 

  15. Greenberg, A.S. and McDaniel, M.L., Eur. J. Clin. Inv., 2002, vol. 32, pp. 24–34.

    Article  CAS  Google Scholar 

  16. Kuranov, S.O., Luzina, O.A., and Salakhutdinov, N.F., Russ. J. Bioorg. Chem., 2020, vol. 46, pp. 972–988. https://doi.org/10.1134/S1068162020060151

    Article  CAS  Google Scholar 

  17. Frkic, R.L., He, Y., Rodriguez, B.B., Chang, M.R., Kuruvilla, D., Ciesla, A., Abell, A.D., Kamenecka, T.M., Griffin, P.R., and Bruning, J.B., J. Med. Chem., 2017, vol. 60 (11), pp. 4584–4593. https://doi.org/10.1021/acs.jmedchem.6b01727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cariou, B., Charbonnel, B., and Staels, B., Trends Endocrinol. Metabol., 2012, vol. 23 (5), pp. 205–215. https://doi.org/10.1016/j.tem.2012.03.001

    Article  CAS  Google Scholar 

  19. Kubota, N., Terauchi, Y., Kubota, K.H., Itoh, S., Moroi, M., et al. J. Biolchem., 2006, vol. 281, pp. 8748–8755. https://doi.org/10.1074/jbc.M505649200

    Article  CAS  Google Scholar 

  20. Prabhu, D.S. and Rajeswari, V.D., Mol. Biol. Rep., 2020, vol. 47 (7), pp. 5273–5283. https://doi.org/10.1007/s11033-020-05605-1

    Article  CAS  PubMed  Google Scholar 

  21. Biovia DS, Discovery Studio Visualizer, 2017, San Diego, CA, USA. https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-discovery-studio/visualization/.

  22. Szychowski, K.A., Leja, M.L., Kaminskyy, D.V., Kryshchyshyn, A.P., Binduga, U.E., Pinyazhko, R., Lesyk, R.B., Tobiasz, J., and Gmiński, J., Eur. J. Med. Chem., 2017, vol. 141, pp. 162–168. https://doi.org/10.1016/j.ejmech.2017.09.071

    Article  CAS  PubMed  Google Scholar 

  23. Szychowski, K.A., Skóra, B., Kryshchyshyn-Dylevych, A., Kaminskyy, D., Khyluk, D., and Lesyk, R., Biomed. Pharm., 2021, vol. 139, article no. 111684. https://doi.org/10.1016/j.biopha.2021.111684

    Article  CAS  Google Scholar 

  24. Patagar, D., Uttarkar, A., Patra, S.M., Patil, J.H., Kusanur, R., Niranjan, V., and Ashok Kumar, H.G., Russ. J. Bioorg. Chem., 2021, vol. 47, pp. 390–398. https://doi.org/10.1134/S1068162021020199

    Article  CAS  Google Scholar 

  25. Kotha, S., Swapna, B., Kulkarni, V.M., Setty, R., Harish Kumar, B., and Harisha, R., J. Biomol. Struct. Dynam., 2021, vol. 39 (6), pp. 2210–2229. https://doi.org/10.1080/07391102.2020.1747543

    Article  CAS  Google Scholar 

  26. Faridbod, F., Ganjali, M.R., Larijani, B., Riahi, S., Saboury, A., Hosseini, M., Norouzi, P., and Pillip, C., Spectrochim. Acta Part A Mol. Biomol. Spectr., 2011, vol. 78 (1), pp. 96–101. https://doi.org/10.1016/j.saa.2010.09.001

    Article  CAS  Google Scholar 

  27. Lee, M.A., Tan, L., Yang, H., Im, Y.G., and Im, Y.J., Sci. Rep., 2017, vol. 7 (1), article no. 16837. https://doi.org/10.1038/s41598-017-17082-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rajapaksha, H., Bhatia, H., Wegener, K., Petrovsky, N., and Bruning, J.B., Biochim. Biophys. Acta Gen. Sub., 2017, vol. 1861 (8), pp. 1981–1991. https://doi.org/10.1016/j.bbagen.2017.05.008

    Article  CAS  Google Scholar 

  29. Rajapaksha, H., Bhatia, P., Wegener, K., Petrovsky, N., and Bruning, J.B., Biochim. Biophys. Acta Gen. Sub., 2017, vol. 1861 (8), pp. 1981–1991. https://doi.org/10.1016/j.bbagen.2017.05.008

    Article  CAS  Google Scholar 

  30. Lehman, J.M., Moore, L.B., Smith-Oliver, T.A., Wilkison, W.O., Willson, T.M., and Kliewer, S.A., J. Biol. Chem., 1995, vol. 270, pp. 12953–12956. https://doi.org/10.1074/jbc.270.22.12953

    Article  Google Scholar 

  31. Ferre, P., Diabetes, 2004, vol. 53, pp. 43–50. https://doi.org/10.2337/diabetes.53.2007.S43

    Article  Google Scholar 

  32. Geetha, B., Swarnalatha, G., and Reddy, G.S., Rasayan J. Chem., 2019, vol. 12 (3), pp. 1063–1071. https://doi.org/10.31788/RJC.2019.1235165

    Article  CAS  Google Scholar 

  33. Sanner, M.F., J. Mol. Graph. Mod., 1999, vol. 17, pp. 57–61.

    CAS  Google Scholar 

  34. Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., and Olson, A.J., J. Comp. Chem., 2009, vol. 16, pp. 2785–27891. https://doi.org/10.1002/jcc.21256

    Article  CAS  Google Scholar 

  35. Schrodinger, LLC., The PyMOL Molecular Graphics System, Version 2.2.3. 2010

  36. Trott, O. and Olson, A.J., J. Comp. Chem., 2010, vol. 31 (2), pp. 455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  Google Scholar 

  37. Fukumitsu, S., Aida, K., Ueno, N., Ozawa, S., Takahashi, Y., and Kobori, M., British J. Nutr., 2008, vol. 100 (3), pp. 669– 676. https://doi.org/10.1017/S0007114508911570

    Article  CAS  Google Scholar 

  38. Variya, B.C., Modi, S.J., Savjani, J., and Patel, S., Int. J. Pharm. Pharm. Sci., 2016, vol. 9 (1), p. 102.

    Article  Google Scholar 

  39. Izrailev, S., Stepaniants, S., Balsera, M., Oono, Y., and Schulten, K., Biophys. J., 1997, vol. 72, pp. 1568–1581. https://doi.org/10.1016/S0006-3495(97)78804-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, W., Donini, O., Reyes, C.M., and Kollman, P.A., Ann. Rev. Biophys. Biomol. Struct., 2001, vol. 30, pp. 211–243. https://doi.org/10.1146/annurev.biophys.30.1.211

    Article  CAS  Google Scholar 

  41. Simonson, T., Archontis, G., and Karplus, M., Acc. Chem. Res., 2002, vol. 35, pp. 430–437. https://doi.org/10.1021/ar010030m

    Article  CAS  PubMed  Google Scholar 

  42. Gervasio, F.G., Laio, A., and Parrinello, M., J. Am. Chem. Soc., 2005, vol. 127, pp. 2600–2607. https://doi.org/10.1021/ja0445950

    Article  CAS  PubMed  Google Scholar 

  43. Woo, H.J. and Roux, B., Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, pp. 6825–6830. https://doi.org/10.1073/pnas.0409005102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, D., Gullingsgrud, J., and McCammon, J.A., J. Am. Chem. Soc., 2006, vol. 128, pp. 3019–3026. https://doi.org/10.1021/ja057292u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gabdoulline, R.R. and Wade, R.C., Biophys. J., 1997, vol. 72, pp. 1917–1929. https://doi.org/10.1016/S0006-3495(97)78838-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fu, W., Cui, M., Briggs, J.M., Huang, X., Xiong, B., Zhang, Y., Luo, X., Shen, J., Ji, R., Jiang, H., Chen, K., Biophys. J., 2002, vol. 83, pp. 2370–2385. https://doi.org/10.1016/S0006-3495(02)75251-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gross, E.L. and Pearson, D.C., Jr., Biophys. J., 2003, vol. 85, pp. 2055–2068. https://doi.org/10.1016/S0006-3495(03)74633-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Halperin, I., Ma, B., Wolfson, H., and Nussinov, R., Proteins, 2002, vol. 47, pp. 409–443. https://doi.org/10.1002/prot.10115

    Article  CAS  PubMed  Google Scholar 

  49. Brooijmans, N. and Kuntz, I.D., Ann. Rev. Biophys. Biomol. Struct., 2003, vol. 32, pp. 335–373. https://doi.org/10.1146/annurev.biophys.32.110601.142532

    Article  CAS  Google Scholar 

  50. Sousa, S.F., Fernandes, P.A., and Ramos, M.J., Proteins, 2006, vol. 65, pp. 15–26. https://doi.org/10.1002/prot.21082

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to the Principal, RV College of Engineering, Bengaluru, Karnataka, India for providing the computational facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarna M. Patra.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article doesnot contain any studies involving human participants performed by any of the authors and doesnot contain any studies involving animals performed by any of the author.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, P., S, A., Masood, G. et al. Bioinformatics Study of Pioglitazone Analogues as Potential Anti-Diabetic Drugs. Russ J Bioorg Chem 48, 976–989 (2022). https://doi.org/10.1134/S106816202205017X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106816202205017X

Keywords:

Navigation