Skip to main content
Log in

The Cytoskeletal Protein Zyxin Modulates the Expression of the Target Genes of the Shh Signaling Cascade in the Cells of the Neural Plate of Embryos of the Spur-Toed Frog Xenopus laevis

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

It has been shown earlier in a study of the role of the cytoskeletal protein zyxin in cell differentiation in the primordium of the central nervous system (CNS) of the spur-toed frog Xenopus laevis that zyxin interacts with three components of the signaling cascade of the secreted factor Sonic hedgehog (Shh): the transmembrane receptor Patched2 (Ptc2) and the transcription regulators Gli1 and Zic1. In the present work, the effect of zyxin knockdown on the expression of some key proteins of the Shh cascade has been studied. It has been shown using the RT-q PCR that the suppression of zyxin translation enhances the inhibitory effect of Shh on the expression of the target genes of this cascade such as Pax6, Irx3, and Dbx2 and affects the number of transcripts of several genes encoding the proteins that directly provide the functioning of the Shh cascade: Shh, Gli1, Ptc2, and Zic1. A hypothesis has been proposed that zyxin is involved in the regulation of the spatial marking of neural plate cells through the inhibitory effect on the Shh cascade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Crawford, A.W. and Beckerle, M.C., J. Biol. Chem., 1991, vol. 266, pp. 5847–5853.

    CAS  PubMed  Google Scholar 

  2. Yoshigi, M., Hoffman, L.M., Jensen, C.C., Yost, H.J., and Beckerle, M.C., J. Cell Biol., 2005, vol. 171, pp. 209–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Conley, B.A., Koleva, R., Smith, J.D., Kacer, D., Zhang, D., Bernabeu, C., and Vary, C.P., J. Biol. Chem., 2004, vol. 279, pp. 27 440–27 449.

    Article  Google Scholar 

  4. Martynova, N.U., Ermolina, L.V., Eroshkin, F.M., and Zarayskiy, A.G., Russ. J. Bioorg. Chem., 2015, vol. 41, pp. 670–674.

  5. Nix, D.A. and Beckerle, M.C., J. Cell Biol., 1997, vol. 138, pp. 1139–1147.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Martynova, N.Y., Ermolina, L.V., Ermakova, G.V., Eroshkin, F.M., Gyoeva, F.K., Baturina, N.S., and Zaraisky, A.G., Dev. Biol., 2013, vol. 380, pp. 37–48.

    Article  CAS  PubMed  Google Scholar 

  7. Martynova, N.Y., Parshina, E.A., Ermolina, L.V., and Zaraisky, A.G., Biochem. Biophys. Res. Commun., 2018, vol. 504, pp. 251–256.

    CAS  PubMed  Google Scholar 

  8. Sadler, I., Crawford, A.W., Michelsen, J.W., and Beckerle, M.C., J. Cell Biol., 1992, vol. 119, pp. 1573–1588.

    CAS  PubMed  Google Scholar 

  9. Martynova, N.Y., Ermolina, L.V., Eroshkin, F.M., Gioeva, F.K., and Zaraisky, A.G., Russ. J. Bioorg. Chem., 2008, vol. 34, pp. 513–516.

    CAS  Google Scholar 

  10. Martynova, N.Y., Eroshkin, F.M., Ermolina, L.V., Ermakova, G.V., Korotaeva, A.L., Smurova, K.M., and Zaraisky, A.G., Dev. Dyn., 2008, vol. 237, pp. 736–749.

    CAS  PubMed  Google Scholar 

  11. Nakata, K., Koyabu, Y., Aruga, J., and Mikoshiba, K., Mech. Dev., 2000, vol. 99, pp. 83–91.

    CAS  PubMed  Google Scholar 

  12. Lee, J.J., Ekker, S.C., von Kessler, D.P., Porter, J.A., Sun, B.I., and Beachy, P.A., Science, 1994, vol. 266, pp. 1528–1537.

    CAS  PubMed  Google Scholar 

  13. Lai, C.J., Ekker, S.C., Beachy, P.A., and Moon, R.T., Development, 1995, vol. 121, pp. 2349–2360.

    CAS  PubMed  Google Scholar 

  14. Porter, J.A., von Kessler, D.P., Ekker, S.C., Young, K.E., Lee, J.J., Moses, K., and Beachy, P.A., Nature, 1995, vol. 374, pp. 363–366.

    CAS  PubMed  Google Scholar 

  15. Chen, Y. and Struhl, G., Cell, 1996, vol. 87, pp. 553–563.

    CAS  PubMed  Google Scholar 

  16. Alcedo, J., Ayzenzon, M., Von Ohlen, T., Noll, M., and Hooper, J.E., Cell, 1996, vol. 86, pp. 221–232.

    CAS  PubMed  Google Scholar 

  17. Skoda, A.M., Simovic, D., Karin, V., Kardum, V., Vranic, S., and Serman, L., Bosn. J. Basic Med. Sci., 2018, vol. 18, pp. 8–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pietrobono, S., Gagliardi, S., and Stecca, B., Front. Genet., 2019, vol. 10, p. 556.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Koyabu, Y., Nakata, K., Mizugishi, K., Aruga, J., and Mikoshiba, K., J. Biol. Chem., 2001, vol. 276, pp. 6889–6892.

    CAS  PubMed  Google Scholar 

  20. Mizugishi, K., Aruga, J., Nakata, K., and Mikoshiba, K., J. Biol. Chem., 2001, vol. 276, pp. 2180–2188.

    CAS  PubMed  Google Scholar 

  21. Ingham, P.W., Genes Dev., 2001, vol. 15, pp. 3059–3087.

    CAS  PubMed  Google Scholar 

  22. Briscoe, J., Pierani, A., Jessell, T.M., and Ericson, J., Cell, 2000, vol. 101, pp. 435–445.

    CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basis Research (project no. 18-04-00674 а). Experiments on immunoblotting were performed under the project of the Russian Foundation for Basic Research (project no. 18-29-07014). Experiments on phenotypic alterations of the neural plate were carried out under the project of the Russian Science Foundation (project no. 19-14-00098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Martynova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The paper does not contain any studies involving human participants performed by any of the authors. All international, national, and/or institutional guidelines for the care and use of experimental animals were followed.

Conflict of Interests

The authors declare that there is no conflict of interest.

Additional information

Translated by S. Sidorova

Corresponding author: phone: +7 (916) 181-16-32; fax: +7 (495) 3368611; e-mail: martnat61@gmail.com.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martynova, N.Y., Parshina, E.A., Eroshkin, F.M. et al. The Cytoskeletal Protein Zyxin Modulates the Expression of the Target Genes of the Shh Signaling Cascade in the Cells of the Neural Plate of Embryos of the Spur-Toed Frog Xenopus laevis . Russ J Bioorg Chem 46, 530–536 (2020). https://doi.org/10.1134/S1068162020040147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162020040147

Keywords:

Navigation