Skip to main content
Log in

“Divide and conquer” approach to the structural studies of multidomain ion channels by the example of isolated voltage sensing domains of human Kv2.1 and Nav1.4 channels

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Voltage-gated K+ and Na+ channels are involved in diverse physiological processes including excitability of heart, muscular and neuronal cells, as well as release of hormones and neurotransmitters. These channels have modular structure and contain five membrane domains: four voltage-sensing domains (VSDs) and one pore domain. VSDs of different channels contain unique ligand-binding sites and are considered as potential pharmacological targets. Modular organization of ion channels points to the possibility of NMR structural studies of isolated VSDs apart from the pore. Here, the feasibility of such studies is considered by the example of VSD of human Kv2.1 channel and VSD-I of human Nav1.4 channel. Cell-free protein expression systems based on the S30 bacterial extract from E. coli, which allow us to produce milligram quantities of VSD samples, including their analogues labeled with stable isotopes, were developed. The choice of membrane- mimicking media that provide long-term stability of the native structure of the membrane protein and high-quality of NMR spectra is a crucial step in NMR studies. Screening of various environments showed that the domains of the Kv2.1 and Nav1.4 channels are unstable in media containing phospholipids: micelles of short-chain lipid DC7PC and lipid-detergent bicelles based on zwitterionic or anionic saturated lipids (DMPC and DMPG). It was demonstrated that the optimal media for NMR studies are the mixtures of zwitterionic and weakly cationic detergents (FOS-12/LDAO). The VSD sample of the Nav1.4 channel in FOS- 12/LDAO environment aggregated irreversibly within a few days despite the high-quality spectra. It is likely that VSDs of human K+ and Na+ channels are not completely autonomous membrane domains and the contacts with other domains of the channel are required for their stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a.a.:

amino acid residue

1D:

one-dimensional

2D:

two-dimensional

DHPC:

dihexanoylphosphatidylcholine

DC7PC:

diheptanoylphosphatidylcholine

DMPC:

dimyristoylphosphatidylcholine

DMPG:

dimyristoylphosphatidylglycerol

FM:

feeding mixture

FOS-10:

n-decylphosphocholine

FOS-12 (DPC):

n-dodecylphosphocholine

FOS-14:

n-tetradecylphosphocholine

LDAO:

n-dodecyl–N,N–dimethylamine–N–oxide

LS:

sodium lauryl sarcosinate

LPPG:

lysopalmitoylphosphatidylglycerol

RM:

reaction mixture

SDS:

sodium dodecyl sulfate, TM, transmembrane

TROSY:

transverse relaxation optimized spectroscopy

VSD:

voltage sensing domain

References

  1. Hille, B., Ion Channels of Excitable Membranes, 3rd ed., Sunderland, MA: Sinauer Associates Inc., 2001.

    Google Scholar 

  2. Ashcroft, F.M., Ion Channels and Disease, 1st ed., San Diego, CA: Academic Press, 1999.

    Google Scholar 

  3. Speca, D.J., Ogata, G., Mandikian, D., Bishop, H.I., Wiler, S.W., Eum, K., Jurgen, WenzelH., Doisy, E.T., Matt, L., Campi, K.L., Golub, M.S., Nerbonne, J.M., Hell, J.W., Trainor, B.C., Sack, J.T., Schwartzkroin, P.A., and Trimmer, J.S., Genes Brain Behav., 2014, vol. 13, no. 4, pp. 394–408.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Shah, N.H. and Aizenman, E., Transl. Stroke Res., 2014, vol. 5, pp. 38–58.

    Article  PubMed  CAS  Google Scholar 

  5. Li, X.N., Herrington, J., Petrov, A., Ge, L., Eiermann, G., Xiong, Y., Jensen, M.V., Hohmeier, H.E., Newgard, C.B., Garcia, M.L., Wagner, M., Zhang, B.B., Thornberry, N.A., Howard, A.D., Kaczorowski, G.J., and Zhou, Y.P., J. Pharmacol. Exp. Ther., 2013, vol. 344, pp. 407–416.

    Article  PubMed  CAS  Google Scholar 

  6. Long, S.B., Tao, X., Campbell, E.B., and Mackinnon, R., Nature, 2007, vol. 450, no. 7168, pp. 376–382.

    Article  PubMed  CAS  Google Scholar 

  7. Payandeh, J., Gamal, El-DinT.M., Scheuer, T., Zheng, N., and Catterall, W.A., Nature, 2012, vol. 486, no. 7401, pp. 135–139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ahuja, S., Mukund, S., Deng, L., Khakh, K., Chang, E., Ho, H., Shriver, S., Young, C., Lin, S., Johnson, J.P., Wu, P., Li, J., Coons, M., Tam, C., Brillantes, B., Sampang, H., Mortara, K., Bowman, K.K., Clark, K.R., Estevez, A., Xie, Z., Verschoof, H., Grimwood, M., Dehnhardt, C., Andrez, J.C., Focken, T., Sutherlin, D.P., Safina, B.S., Starovasnik, M.A., Ortwine, D.F., Franke, Y., Cohen, C.J., Hackos, D.H., Koth, C.M., and Payandeh, J., Science, 2015, vol. 350, p. aac5464.

    Article  PubMed  CAS  Google Scholar 

  9. Sun, J. and Mackinnon, R., Cell, 2017, vol. 169, no. 6, pp. 1042–1050.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Wang, W. and Mackinnon, R., Cell, 2017, vol. 169, no. 3, pp. 422–430.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Wu, J., Yan, Z., Li, Z., Qian, X., Lu, S., Dong, M., Zhou, Q., and Yan, N., Nature, 2016, vol. 537, pp. 191–196.

    Article  PubMed  CAS  Google Scholar 

  12. Shen, H., Zhou, Q., Pan, X., Li, Z., Wu, J., and Yan, N., Science, 2017, vol. 355, no. 6328, p. eaal4326.

    Article  PubMed  CAS  Google Scholar 

  13. Jensen, M. Ø., Jogini, V., Borhani, D.W., Leffler, A.E., Dror, R.O., and Shaw, D.E., Science, 2012, vol. 336, no. 6078, pp. 229–233.

    Article  PubMed  CAS  Google Scholar 

  14. Vargas, E., Yarov-Yarovoy, V., Khalili-Araghi, F., Catterall, W.A., Klein, M.L., Tarek, M., Lindahl, E., Schulten, K., Perozo, E., Bezanilla, F., and Roux, B., J. Gen. Physiol., 2012, vol. 140, no. 6, pp. 587–594.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Lau, C.H., King, G.F., and Mobli, M., Sci. Rep., 2016, vol. 6, p. 34333.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Börjesson, S.I. and Elinder, F.J., Gen. Physiol., 2011, vol. 137, no. 6, pp. 563–577.

    Article  CAS  Google Scholar 

  17. Shenkarev, Z.O., Paramonov, A.S., Lyukmanova, E.N., Shingarova, L.N., Yakimov, S.A., Dubinnyi, M.A., Chupin, V.V., Kirpichnikov, M.P., Blommers, M.J., and Arseniev, A.S., J. Am. Chem. Soc., 2010, vol. 132, no. 16, pp. 5630–5637.

    Article  PubMed  CAS  Google Scholar 

  18. Stevens, M., Peigneur, S., and Tytgat, J., Front. Pharmacol., 2011, vol. 2, pp. 1–13.

    Article  CAS  Google Scholar 

  19. Bosmans, F., Martin-Eauclaire, M.F., and Swartz, K.J., Nature, 2008, vol. 456, no. 7219, pp. 202–208.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Li, P., Chen, Z., Xu, H., Sun, H., Li, H., Liu, H., Yang, H., Gao, Z., Jiang, H., and Li, M., Cell Res., 2013, vol. 23, no. 9, pp. 1106–1118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Shenkarev, Z.O., Lyukmanova, E.N., Paramonov, A.S., Shingarova, L.N., Chupin, V.V., Kirpichnikov, M.P., Blommers, M.J., and Arseniev, A.S., J. Am. Chem. Soc., 2010, vol. 132, no. 16, pp. 5628–5629.

    Article  PubMed  CAS  Google Scholar 

  22. Paramonov, A.S., Lyukmanova, E.N., Myshkin, M.Y., Shulepko, M.A., Kulbatskii, D.S., Petrosian, N.S., Chugunov, A.O., Dolgikh, D.A., Kirpichnikov, M.P., Arseniev, A.S., and Shenkarev, Z.O., Biochim. Biophys. Acta, 2017, vol. 1859, no. 3, pp. 493–506.

    Article  CAS  Google Scholar 

  23. Lu, Z., Klem, A.M., and Ramu, Y., Nature, 2001, vol. 413, pp. 809–813.

    Article  PubMed  CAS  Google Scholar 

  24. Arrigoni, C., Schroeder, I., Romani, G., Van Etten, J.L., Thiel, G., and Moroni, A., J. Gen. Physiol., 2013, vol. 141, pp. 389–395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Takeshita, K., Sakata, S., Yamashita, E., Fujiwara, Y., Kawanabe, A., Kurokawa, T., Okochi, Y., Matsuda, M., Narita, H., Okamura, Y., and Nakagawa, A., Nat. Struct. Mol. Biol., 2014, vol. 21, pp. 352–357.

    Article  PubMed  CAS  Google Scholar 

  26. Li, Q., Wanderling, S., Paduch, M., Medovoy, D., Singharoy, A., McGreevy, R., Villalba-Galea, C.A., Hulse, R.E., Roux, B., Schulten, K., Kossiakoff, A., and Perozo, E., Nat. Struct. Mol. Biol., 2014, vol. 21, pp. 244–252.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Li, Q., Wanderling, S., Sompornpisut, P., and Perozo, E., Nat. Struct. Mol. Biol., 2014, vol. 21, no. 2, pp. 160–166.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Butterwick, J.A. and Mackinnon, R., J. Mol. Biol., 2010, vol. 403, no. 4, pp. 591–606.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Chakrapani, S., Cuello, L.G., Cortes, D.M., and Perozo, E., Structure, 2008, vol. 16, no. 3, pp. 398–409.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Lyukmanova, E.N., Shenkarev, Z.O., Khabibullina, N.F., Kulbatskiy, D.S., Shulepko, M.A., Petrovskaya, L.E., Arseniev, A.S., Dolgikh, D.A., and Kirpichnikov, M.P., Acta Naturae, 2012, vol. 4, no. 4, pp. 58–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Fernández, C., Hilty, C., Wider, G., and Wüthrich, K., Proc. Natl. Acad. Sci. U. S. A., 2002, vol. 99, pp. 13533–13537.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Imaishi, Y., Kakehashi, R., Nezu, T., and Maeda, H., J. Colloid Interface Sci., 1998, vol. 197, pp. 309–316.

    Article  PubMed  CAS  Google Scholar 

  33. Lyukmanova, E.N., Shenkarev, Z.O., Khabibullina, N.F., Kopeina, G.S., Shulepko, M.A., Paramonov, A.S., Mineev, K.S., Tikhonov, R.V., Shingarova, L.N., and Petrovskaya, L.E., Biochim. Biophys. Acta, 2012, vol. 1818, pp. 349–358.

    Article  PubMed  CAS  Google Scholar 

  34. Khabibullina, N.F., Lyukmanova, E.N., Kopeina, G.S., Shenkarev, Z.O., Arsen’ev, A.S., Dolgikh, D.A., and Kirpichnikov, M.P., Russ. J. Bioorg. Chem., 2010, vol. 36, pp. 603–609.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. O. Shenkarev.

Additional information

Original Russian Text © M.Yu. Myshkin, A.S. Paramonov, D.S. Kulbatskii, E.N. Lyukmanova, M.P. Kirpichnikov, Z.O. Shenkarev, 2017, published in Bioorganicheskaya Khimiya, 2017, Vol. 43, No. 6, pp. 608–619.

The paper is published based on the materials of the presentation at the VIII Russian Symposium “Proteins and Peptides”, September 18–22, 2017, Moscow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myshkin, M.Y., Paramonov, A.S., Kulbatskii, D.S. et al. “Divide and conquer” approach to the structural studies of multidomain ion channels by the example of isolated voltage sensing domains of human Kv2.1 and Nav1.4 channels. Russ J Bioorg Chem 43, 634–643 (2017). https://doi.org/10.1134/S1068162017060103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162017060103

Keywords

Navigation