Skip to main content
Log in

Single mutation in peptide inhibitor of TRPV1 receptor changes its effect from hypothermic to hyperthermic level in animals

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

The TRPV1 receptor plays a significant role in many biological processes, such as perception of external temperature (above 43°C), inflammation development, and thermoregulation. Activation of TRPV1 leads to the pain occurrence and decrease in the body temperature, while inhibition of this receptor can lead to an increase in the temperature. The TRPV1 peptide modulators from sea anemone Heteractis crispa extract (APHC1 and APHC3) have been previously characterized as molecules, which generated a pronounced analgesic effect and a decrease in the body temperature in experimental animals. Using the combined APHC1 and APHC3 amino acid sequences, we have prepared a hybrid peptide molecule named A13 that contains all residues potentially important for the activity of the peptide precursors. Biological tests on animals have shown that the hybrid molecule not only combines the analgesic properties of both peptides but, unlike the peptide precursors, also raises the body temperature of experimental animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TRPV1:

vanilloid receptor 1

IPTG:

isopropyl-ß- D-1-thiogalactopyranoside

CFA:

complete Freund’s adjuvant

TFA:

trifluoroacetic acid.

References

  1. Szallasi, A., Cortright, D.N., Blum, C.A., and Eid, S.R., Nat. Rev. Drug. Discov., 2007, vol. 6, pp. 357–372.

    Article  CAS  PubMed  Google Scholar 

  2. Andreev, Y.A., Vassilevski, A.A., and Kozlov, S.A., Recent. Pat. Inflamm. Allergy Drug Discov., 2012, vol. 6, pp. 35–45.

    Article  CAS  PubMed  Google Scholar 

  3. Andreev, Y.A., Kozlov, S.A., Koshelev, S.G., Ivanova, E.A., Monastyrnaya, M.M., Kozlovskaya, E.P., and Grishin, E.V., J. Biol. Chem., 2008, vol. 283, pp. 23914–23921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Andreev, Ya.A., Kozlov, S.A., Kozlovskaya, E.P., and Grishin, E.V., Dokl. Akad. Nauk, 2009, vol. 424, pp. 688–691.

    Google Scholar 

  5. Kozlov, S.A., Andreev, Y.A., Murashev, A.N., Skobtsov, D.I., D’iachenko, I.A., and Grishin, E.V., Russ. J. Bioorg. Chem., 2009, vol. 35, pp. 711–720.

    Article  CAS  Google Scholar 

  6. Philyppov, I.B., Paduraru, O.N., Andreev, Y.A., Grishin, E.V., and Shuba, Y.M., Life Sci., 2012, vol. 91, pp. 912–920.

    Article  CAS  PubMed  Google Scholar 

  7. Andreev, Y.A., Kozlov, S.A., Korolkova, Y.V., Dyachenko, I.A., Bondarenko, D.A., Skobtsov, D.I., Murashev, A.N., Kotova, P.D., Rogachevskaja, O.A., Kabanova, N.V., Kolesnikov, S.S., and Grishin, E.V., Mar. Drugs, 2013, vol. 11, pp. 5100–5115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gasparini, S., Danse, J.M., Lecoq, A., Pinkasfeld, S., Zinn-Justin, S., Young, L.C., de Medeiros, C.C., Rowan, E.G., Harvey, A.L., and Ménez, A., J. Biol. Chem., 1998, vol. 25, pp. 25393–25403.

    Article  Google Scholar 

  9. Smith, L.A., Reid, P.F., Wang, F.C., Parcej, D.N., Schmidt, J.J., Olson, M.A., and Dolly, J.O., Biochemistry, 1997, vol. 24, pp. 7690–7696.

    Article  Google Scholar 

  10. Gavva, N.R., Bannon, A.W., Surapaneni, S., Hovland, D.N., Jr., Lehto, S.G., Gore, A., Juan, T., Deng, H., Han, B., Klionsky, L., Kuang, R., Le, A., Tamir, R., Wang, J., Youngblood, B., Zhu, D., Norman, M.H., Magal, E., Treanor, J.J., and Louis, J.C., J. Neurosci., 2007, vol. 27, pp. 3366–3374.

    Article  CAS  PubMed  Google Scholar 

  11. Steiner, A.A., Turek, V.F., Almeida, M.C., Burmeister, J.J., Oliveira, D.L., Roberts, J.L., Bannon, A.W., Norman, M.H., Louis, J.C., Treanor, J.J., Gavva, N.R., and Romanovsky, A.A., J. Neurosci., 2007, vol. 27, pp. 7459–7468.

    Article  CAS  PubMed  Google Scholar 

  12. Garami, A., Shimansky, Y.P., Pakai, E., Oliveira, D.L., Gavva, N.R., and Romanovsky, A.A., J. Neurosci., 2010, vol. 30, pp. 1435–1440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Romanovsky, A.A., Almeida, M.C., Garami, A., Steiner, A.A., Norman, M.H., Morrison, S.F., Nakamura, K., Burmeister, J.J., and Nucci, T.B., Pharmacol. Rev., 2009, vol. 61, pp. 228–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Honore, P., Chandran, P., Hernandez, G., Gauvin, D.M., Mikusa, J.P., Zhong, C., Joshi, S.K., Ghilardi, J.R., Sevcik, M., Fryer, R.M., Segreti, J.A., Banfor, P.N., Marsh, K., Neelands, T., Bayburt, E., Daanen, J.F., Gomtsyan, A., Lee, C.H., Kort, M.E., Reilly, R.M., Surowy, C.S., Kym, P.R., Mantyh, P.W., Sullivan, J.P., Jarvis, M.F., and Faltynek, C.R., Pain, 2009, vol. 142, pp. 27–35.

    Article  CAS  PubMed  Google Scholar 

  15. Lehto, S.G., Tamir, R., Deng, H., Klionsky, L., Kuang, R., Le, A., Lee, D., Louis, J.C., Magal, E., Manning, B.H., Rubino, J., Surapaneni, S., Tamayo, N., Wang, T., Wang, J., Wang, J., Wang, W., Youngblood, B., Zhang, M., Zhu, D., Norman, M.H., and Gavva, N.R., J. Pharmacol. Exp. Ther., 2008, vol. 326, pp. 218–229.

    Article  CAS  PubMed  Google Scholar 

  16. Davis, J.B., Gray, J., Gunthorpe, M.J., Hatcher, J.P., Davey, P.T., Overend, P., Harries, M.H., Latcham, J., Clapham, C., Atkinson, K., Hughes, S.A., Rance, K., Grau, E., Harper, A.J., Pugh, P.L., Rogers, D.C., Bingham, S., Randall, A., and Sheardown, S.A., Nature, 2000, vol. 405, pp. 183–187.

    Article  CAS  PubMed  Google Scholar 

  17. Jara-Oseguera, A., Simon, S.A., and Rosenbaum, T., Curr. Mol. Pharmacol., 2008, vol. 1, pp. 255–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tang, L., Chen, Y., Chen, Z., Blumberg, P.M., Kozikowski, A.P., and Wang, Z.J., J. Pharmacol. Exp. Ther., 2007, vol. 321, pp. 791–798.

    Article  CAS  PubMed  Google Scholar 

  19. Ikeda, Y., Ueno, A., Naraba, H., and Ohishi, S., Life Sci., 2001, vol. 69, pp. 2911–2919.

    Article  CAS  PubMed  Google Scholar 

  20. Le Bars, D., Gozariu, M., and Cadden, S.W., Pharmacol. Rev., 2001, vol. 53, pp. 597–652.

    CAS  PubMed  Google Scholar 

  21. Andreev, Y.A., Kozlov, S.A., Vassilevski, A.A., and Grishin, E.V., Anal. Biochem., 2010, vol. 1, pp. 144–146.

    Article  Google Scholar 

  22. Val’dman, A.V. and Ignatov, Yu.D., in Tsentral’nye mekhanizmy boli (Central Mechanisms of Pain), Leningrad: Nauka, 1976.

    Google Scholar 

  23. Narender, R.G., Rami, T., and Yusheng, Q., J. Pharmacol. Exp. Ther., 2005, vol. 313, pp. 474–484.

    Google Scholar 

  24. Antuch, W., Berndt, K.D., Chavez, M.A., Delfin, J., and Wuthrich, K., Eur. J. Biochem., 1993, vol. 212, pp. 675–684.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kozlov.

Additional information

Original Russian Text © I.A. Dyachenko, V.A. Palikov, Yu.A. Palikova, G.I. Belous, A.N. Murashev, Ya.A. Andreev, Yu.A. Logashina, E.E. Maleeva, E.V. Grishin, S.A. Kozlov, 2017, published in Bioorganicheskaya Khimiya, 2017, Vol. 43, No. 5, pp. 482–490.

Deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyachenko, I.A., Palikov, V.A., Palikova, Y.A. et al. Single mutation in peptide inhibitor of TRPV1 receptor changes its effect from hypothermic to hyperthermic level in animals. Russ J Bioorg Chem 43, 509–516 (2017). https://doi.org/10.1134/S1068162017050053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162017050053

Keywords

Navigation