Skip to main content
Log in

A novel approach to identification of somatic retroelements’ insertions in human genome

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

The activity of retroelements is one of the factors leading to genetic variability of the modern humans. Insertions of retroelements may result in alteration of gene expression and functional diversity between cells. In recent years an increasing amount of data indicating an elevated level of retroelements’ mobilisation in some human and animal tissues has been reported. Therefore, the development of a system for the detection of somatic retroposition events is required. Here we describe a novel approach to the whole-genome identification of somatic retroelement insertions in human genome. The developed approach was applied for the comparisons of somatic mosaicism levels in two tissues of the investigated individual. A total of 3410 insertions of retroelements belonging to AluYa5 subfamily were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NGS:

new generation sequencing

References

  1. Passos-Bueno, M.R., Bakker, E., Kneppers, A.L., Takata, R.I., Rapaport, D., Dunnen, J.T., Zatz, M., and van Ommen, G.J., Am. J. Hum. Genet., 1992, vol. 51, pp. 1150–1155.

    PubMed  CAS  Google Scholar 

  2. Petek, E., Jenne, D.E., Smolle, J., Binder, B., Lasinger, W., Windpassinger, C., Wagner, K., Kroisel, P.M., and Kehrer-Sawatzki, H., J. Med. Genet., 2003, vol. 40, pp. 520–525.

    Article  PubMed  CAS  Google Scholar 

  3. Lengauer, C., Kinzler, K.W., and Vogelstein, B., Nature, 1998, vol. 396, pp. 643–649.

    Article  PubMed  CAS  Google Scholar 

  4. Bielanska, M., Tan, S.L., and Ao, A., Hum. Reprod., 2002, vol. 17, pp. 413–419.

    Article  PubMed  Google Scholar 

  5. Bruder, C.E., Piotrowski, A., Gijsbers, A.A., Andersson, R., Erickson, S., Diaz de Stahl, T., Menzel, U., Sandgren, J., Von Tell, D., Poplawski, A., Crowley, M., Crasto, C., Partridge, E.C., Tiwari, H., Allison, D.B., Komorowski, J., Van Ommen, G.J., Boomsma, D.I., Pedersen, N.L., Den Dunnen, J.T., Wirdefeldt, K., and Dumanski, J.P., Am. J. Hum. Genet., 2008, vol. 82, pp. 763–771.

    Article  PubMed  CAS  Google Scholar 

  6. Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J.L., Capy, P., Chalhoub, B., Flavell, A., Leroy, P., Morgante, M., Panaud, O., Paux, E., Sanmiguel, P., and Schulman, A.H., Nat. Rev. Genet., 2007, vol. 8, pp. 973–982.

    Article  PubMed  CAS  Google Scholar 

  7. Bannert, N. and Kurth, R., Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, pp. 14 572–14 579.

    Article  CAS  Google Scholar 

  8. Feng, Q., Moran, J.V., Kazazian, H.H., and Boeke, J.D., Cell, 1996, vol. 87, pp. 905–916.

    Article  PubMed  CAS  Google Scholar 

  9. Mamedov, I.Z., Arzumanyan, E.S., Amosova, A.L., Lebedev, Y.B., and Sverdlov, E.D., Nucleic Acids Res., 2005, vol. 33, p. e16.

    Article  PubMed  Google Scholar 

  10. Cordaux, R., Hedges, D.J., Herke, S.W., and Batzer, M.A., Gene, 2006, vol. 373, pp. 134–137.

    Article  PubMed  CAS  Google Scholar 

  11. Mills, R.E., Bennett, E.A., Iskow, R.C., and Devine, S.E., Trends Genet., 2007, vol. 23, pp. 183–191.

    Article  PubMed  CAS  Google Scholar 

  12. Deininger, P.L. and Batzer, M.A., Mol. Genet. Metab., 1999, vol. 67, pp. 183–193.

    Article  PubMed  CAS  Google Scholar 

  13. Polak, P. and Domany, E.A., BMC Genomics, 2006, vol. 7, p. 133.

    Article  PubMed  Google Scholar 

  14. Belancio, V.P., Hedges, D.J., and Deininger, P., Nucleic Acids Res., 2006, vol. 34, pp. 1512–1521.

    Article  PubMed  CAS  Google Scholar 

  15. Chen, C., Ara, T., and Gautheret, D., Mol. Biol. Evol., 2009, vol. 26, pp. 327–334.

    Article  PubMed  CAS  Google Scholar 

  16. Callinan, P.A. and Batzer, M.A., Genome Dyn., 2006, vol. 1, pp. 104–115.

    Article  PubMed  CAS  Google Scholar 

  17. Hurk, J.A., Meij, I.C., Seleme, M.C., Kano, H., Nikopoulos, K., Hoefsloot, L.H., Sistermans, E.A., de Wijs, I.J., Mukhopadhyay, A., and Plomp, A.S., Hum. Mol. Genet., 2007, vol. 16, pp. 1587–1592.

    Article  PubMed  Google Scholar 

  18. Kano, H., Godoy, I., Courtney, C., Vetter, M.R., Gerton, G.L., Ostertag, E.M., and Kazazian, H.H., Genes Dev., 2009, vol. 23, pp. 1303–1312.

    Article  PubMed  CAS  Google Scholar 

  19. Muotri, A.R., Chu, V.T., Marchetto, M.C., Deng, W., Moran, J.V., and Gage, F.H., Nature, 2005, vol. 435, pp. 903–910.

    Article  PubMed  CAS  Google Scholar 

  20. Coufal, N.G., Garcia-Perez, J.L., Peng, G.E., Yeo, G.W., Mu, Y., Lovci, M.T., Morell, M., O’Shea, K.S., Moran, J.V., and Gage, F.H., Nature, 2009, vol. 460, pp. 1127–1131.

    Article  PubMed  CAS  Google Scholar 

  21. Mamedov, I., Batrak, A., Buzdin, A., Arzumanyan, E., Lebedev, Y., and Sverdlov, E.D., Nucleic Acids Res., 2002, vol. 30, p. e71.

    Article  PubMed  Google Scholar 

  22. Mamedov, I., Lebedev, Y., Hunsmann, G., Khusnutdinova, E., and Sverdlov, E., Genomics, 2004, vol. 84, pp. 597–600.

    Article  Google Scholar 

  23. Garcia-Perez, J.L., Marchetto, M.C., Muotri, A.R., Coufal, N.G., Gage, F.H., O’Shea, K.S., and Moran, J.V., Hum. Mol. Genet., 2007, vol. 16, pp. 1569–1577.

    Article  PubMed  CAS  Google Scholar 

  24. Diatchenko, L., Lau, Y.F., Campbell, A.P., Chenchik, A., Moqadam, F., Huang, B., Lukyanov, S., Lukyanov, K., Gurskaya, N., Sverdlov, E.D., and Siebert, P.D., Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, pp. 6025–6030.

    Article  PubMed  CAS  Google Scholar 

  25. Langmead, B. and Salzberg, S.L., Nat. Methods, 2012, vol. 9, pp. 357–359.

    Article  PubMed  CAS  Google Scholar 

  26. Mamedov, I.Z., Amosova, A.L., Fisunov, G.Yu., and Lebedev, Yu.B., Mol. Biol., 2008, vol. 42, pp. 721–727.

    Article  CAS  Google Scholar 

  27. Wang, J., Song, L., Grover, D., Azrak, S., Batzer, M.A., and Liang, P., Hum. Mutat., 2006, vol. 27, pp. 323–329.

    Article  PubMed  Google Scholar 

  28. Giardine, B., Riemer, C., Hardison, R.C., Burhans, R., Elnitski, L., Shah, P., Zhang, Y., Blankenberg, D., Albert, I., and Taylor, J., Genome Res., 2005, vol. 15, pp. 1451–1455.

    Article  PubMed  CAS  Google Scholar 

  29. Blankenberg, D., von Kuster, G., Coraor, N., Ananda, G., Lazarus, R., Mangan, M., Nekrutenko, A., and Taylor, J., Curr. Protoc. Mol. Biol., 2010, vol. 89, pp. 101–121.

    Google Scholar 

  30. Goecks, J., Nekrutenko, A., Taylor, J., and Galaxy Team, Genome Biol., 2010, vol. 11, p. R86.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Z. Mamedov.

Additional information

Original Russian Text © A.A. Kurnosov, S.V. Ustyugova, M.V. Pogorelyy, A.Yu. Komkov, D.A. Bolotin, K.V. Khodosevich, I.Z. Mamedov, Yu.B. Lebedev, 2013, published in Bioorganicheskaya Khimiya, 2013, Vol. 39, No. 4, pp. 466–476.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurnosov, A.A., Ustyugova, S.V., Pogorelyy, M.V. et al. A novel approach to identification of somatic retroelements’ insertions in human genome. Russ J Bioorg Chem 39, 417–425 (2013). https://doi.org/10.1134/S1068162013040110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162013040110

Keywords

Navigation