Skip to main content
Log in

Current problems in the study of colloidal transport in soil

  • Soil Physics
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

A review of recent literature on the transport of organic and mineral colloids in soils demonstrated the role of such factors as the extrema of water flow velocities, the anisotropy of physical properties, and the presence of preferential water flows in macropores and fissures. In unsaturated soils, the concentration of colloids at the gas-water interphace and the amphiphilicity of their surface are of great importance. The transfer of “living collids” (bacteria and viruses) is mainly due to the convection mechanism; however, of great importance are the entrapping of microorganisms in fine pores, their adsorption (adhesion), their concentration on the gas-water interphace, their sedimentation, and the affecting chemical factors, such as the ionic strength and the pH of the solution. The effect of biological factors is related to the size of cells, chemotaxic mobility, and the growth and reproduction of the microbial biomass. The focal points of recent studies on colloid transport are considered: the study of mechanisms of colloid mobilization under different conditions, the improvement of methods for the direct observation of colloid migration (micromodels, computer tomography, etc.), and the possibility of quantitative description of the entrapping of colloidal particles in soil pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Bronnikova and V. O. Targulian, Cutan Complex of Texturally-Differentiated Soils, with Loamy Soddy-Podzolic Soils as an Example (Akademkniga, Moscow, 2005) [in Russian].

    Google Scholar 

  2. B. A. Devin, E. V. Shein, and L. M. Polyanskaya, “Transfer of Microorganisms in the Soil and Its Quantitative Description,” in Proceedings of the Institute of Soil Science, Moscow State University “Geographical Diversity of Soils: Soil and Biota” (Mosk. Gos. Univ., Moscow, 2003), pp. 128–147 [in Russian].

    Google Scholar 

  3. D. G. Zvyagintsev, I. P. Bab’eva, and G. M. Zenova, Soil Biology (Mosk. Gos. Univ., Moscow, 2005) [in Russian].

    Google Scholar 

  4. E. V. Shein and L. O. Karpachevskii, Explanatory Dictionary on Soil Physics (Geos, Moscow, 2003) [in Russian].

    Google Scholar 

  5. D. G. Allison, D. J. Evans, M. R. W. Brown, and P. Gilbert, “Possible Involvement of the Division Cycle in Dispersal of Escherichia coli from Biofilms,” J. Bacteriol. 172, 1667–1669 (1990).

    Google Scholar 

  6. C. Amrhein, P. A. Mosher, and J. E. Strong, “Colloid-Assisted Transport of Trace Metals in Roadside Soils Receiving Deicing Salts,” Soil Sci. Soc. Am. J. 57, 1212–1217 (1993).

    Article  Google Scholar 

  7. G. Bai, M. L. Brusseau, and R. M. Miller, “Influence of Rhamnolipid Biosurfactant on the Transport of Bacteria through a Sandy Soil,” Appl. Environ. Microbiol. 63, 1866–1873 (1997).

    Google Scholar 

  8. R. C. Bales, S. Li, T. C. J. Yeh, et al., “Bacteriophage and Microsphere Transport in Saturated Porous Media: Forced-Gradient Experiment at Borden, Ontario,” Water Resour. Res. 33, 639–648 (1997).

    Article  Google Scholar 

  9. P. Baveye and A. J. Valocchi, “An Evaluation of Mathematical Models of the Transport of Biologically Reacting Solutes in Saturated Soils and Aquifers,” Water Resour. Res. 25, 1413–1421 (1989).

    Google Scholar 

  10. J. C. Baygents, J. R. Glynn, and O. Albinger, “Variation of Surface Charge Density in Monoclonal Bacterial Populations: Implications for Transport through Porous Media,” Environ. Sci. Techol. 32, 1596–1603 (1998).

    Article  Google Scholar 

  11. M. J. Bazin, P. T. Saunders, and J. I. Prosser, “Models of Microbial Interactions in the Soil,” CRC Crit. Rev. Microbiol. 4, 463–498 (1976).

    Google Scholar 

  12. G. Bengtsson, “Growth and Metabolic Flexibility in Groundwater Bacteria,” Microb. Ecol. 18, 235–248 (1989).

    Article  Google Scholar 

  13. K. Beven and P. Germann, “Macropores and Water Flow in Soils,” Water Resour. Res. 18, 1311–1325 (1982).

    Google Scholar 

  14. B. Bitton and C. P. Gerba, Groundwater Pollution Microbiology (Wiley, New York, 1984).

    Google Scholar 

  15. W. J. Bond, “Illuvial Band Formation in a Laboratory Column of Sand,” Soil Sci. Soc. Am. J. 50, 265–267 (1986).

    Article  Google Scholar 

  16. J. D. Bryers, “Modeling Biofilms Accumulation,” in Physiological Models in Microbiologa, Ed. by M. J. Bazin and J. I. Prosser (CRC, Boca Raton., 1988), pp. 109–144.

    Google Scholar 

  17. T. A. Camesano and B. E. Logan, “Influence of Fluid Velocity and Cell Concentration on the Transport of Motile and Nonmotile Bacteria in Porous Media,” Environ. Sci. Technol. 32, 1699–1708 (1998).

    Article  Google Scholar 

  18. A. K. Camper, J. T. Hayes, P. J. Sturman, et al., “Effects of Motility and Adsorption Rate Coefficient on Transport of Bacteria through Saturated Porous Media,” Appl. Environ. Sci. 59, 3455–3462 (1993).

    Google Scholar 

  19. W. G. Characklis and K. C. Marshall, Biofilms (Wiley, New York, 1990).

    Google Scholar 

  20. Y. M. Chen, L. M. Abriola, P. J. J. Alvarez, et al., “Modeling Transport and Biodegradation of Benzene and Toluene in Sandy Aquifer Material: Comparisons with Experimental Measures,” Water Resour. Res. 28, 1833–1847 (1992).

    Article  Google Scholar 

  21. K. C. Chen, R. M. Ford, and P. T. Cummings, “Mathematical Models for Motile Bacterial Transport in Cylindrical Tubes,” J. Theor. Biol. 195, 481–504 (1998).

    Article  Google Scholar 

  22. Y. Chu, Y. Jin, M. Flury, and M. V. Yates, “Mechanisms of Virus Removal during Transport in Unsaturated Porous Media,” Water Resour. Res. 37, 253–263 (2001).

    Article  Google Scholar 

  23. M. Y. Corapcioglu and A. Haridas, “Transport and Fate of Microorganisms in Porous Media: A Theoretical Investigation,” J. Hydrol. 72, 149–169 (1984).

    Article  Google Scholar 

  24. M. Y. Corapcioglu and A. Haridas, “Microbial Transport in Soils and Groundwater: A Numerical Model,” Adv. Water Resour. 8, 188–200 (1985).

    Article  Google Scholar 

  25. S. R. Crane and J. A. Moore, “Bacterial Pollution of Groundwater: A Review,” Water Air Soil Pollut. 22, 67–83 (1984).

    Article  Google Scholar 

  26. H. de Jonge, O. H. Jacobsen, L. W. de Jonge, and P. Moldrup, “Particle-Facilitated Transport of Prochloraz in Undisturbed Sandy Loam Soil Columns,” Soil Sci. Soc. Am. J. 27, 1495–1503 (1998).

    Google Scholar 

  27. P. J. Delaquis, D. E. Caldwell, J. R. Lawrence, and A. R. McCurdy, “Detachment of Pseudomonas fluorescens from Biofilms on Glass Surfaces in Response to Nutrient Stress,” Microb. Ecol. 18, 199–210 (1989).

    Article  Google Scholar 

  28. N. M. Denovio, J. E. Saiers, and J. N. Ryan, “Colloid Movement in Unsaturated Porous Media: Recent Advances and Future Directions,” Vadose Zone J. 3, 338–351 (2004).

    Google Scholar 

  29. C. A. Plessis, E. Senior, and J. C. Hughes, “Growth Kinetics of Microbial Colonization of Porous Media,” S. Afric. J. Sci. 94, 33–38 (1998).

    Google Scholar 

  30. Y. H. El-Farhan, N. M. DeNovio, J. S. Herman, and G. M. Hornberger, “Mobilization and Transport of Soil Particles during Infiltration Experiments in and Agricultural Field, Shenandoah Valley, Virginia,” Environ. Sci. Technol. 34, 3555–3559 (2000).

    Article  Google Scholar 

  31. D. E. Fontes, A. L. Mills, G. M. Hornberger, and J. S. Herman, “Physical and Chemical Factors Influencing Transport of Microorganisms through Porous Media,” Appl. Environ. Microbiol. 57, 2473–2481 (1991).

    Google Scholar 

  32. C. S. Frazier, R. C. Graham, P. J. Shouse, et al., “A Field Study of Water Flow and Virus Transport in Weathered Granitic Bedrock,” Vadose Zone J. 1, 113–124 (2002).

    Google Scholar 

  33. H. Futamata, M. Sakai, H. Ozawa, et al., “Chemotactic Response to Amino Acids of Fluorescent Pseudomonads Isolated from Spinach Roots Grown in Soils with Different Salinity Levels,” Soil Sci. Plant Nutr. 44, 1–7 (1998).

    Google Scholar 

  34. P. M. Gallagher and S. Finsterle, “Physical and Numerical Model of Colloidal Silica Injection for Passive Site Stabilization,” Vadose Zone J. 3, 917–925 (2004).

    Google Scholar 

  35. A. P. Gamerdinger and D. I. Kaplan, “Physical and Chemical Determinants of Colloid Transport and Deposition in Water-Unsaturated Sand and Yucca Mountain Tuff Material,” Environ. Sci. Technol. 35, 2497–2504 (2001).

    Article  Google Scholar 

  36. J. Gannon, Y. Tan, P. Baveye, and M. Alexander, “Effect of Sodium Chloride and Transport of Bacteria in a Saturated Aquifer Material,” Appl. Environ. Microbiol. 57, 2497–2501 (1991).

    Google Scholar 

  37. J. T. Gannon, U. Mingelgrin, M. Alexander, and R. J. Wagenet, “Bacterial Transport through Homogeneous Soil,” Soil Biol. Biochem. 23, 1155–1160 (1991).

    Article  Google Scholar 

  38. C. P. Gerba, C. Wallis, and J. L. Melnik, “Fate of Wastewater Bacteria and Viruses in Soil,” J. Irrig. Drain. Div. Proc. Am. Soc. Civ. Eng. 101, 157–174 (1975).

    Google Scholar 

  39. P. Gilbert, D. J. Evans, E. Evans, et al., “Surface Characteristics and Adhesion of Escherichia coli and Staphylococcus epidermidis,” J. Appl. Bacteriol. 71, 72–77 (1991).

    Google Scholar 

  40. Glossary of Soil Science Terms (Soil Science Society of America, 1997).

  41. C. Gomez-Suarez, J. Noordmans, H. C. van der Mei, and H. J. Busscher, “Removal of Colloidal Particles from Quartz Collector Surfaces as Stimulated by the Passage of Liquid-Air Interfaces,” Langmuir 15, 5123–5127 (1999).

    Article  Google Scholar 

  42. C. Gomez-Suarez, H. J. Busscher, and H. C. van der Mei, “Analysis of Bacterial Detachment from Substratum Surfaces by the Passage of Air-Liquid Interfaces,” Appl. Environ. Microbiol. 67, 2531–2537 (2001).

    Article  Google Scholar 

  43. M. J. Gross and B. E. Logan, “Influence of Different Chemical Treatments on Transport of Alcaligenes paradoxus in Porous Media,” Appl. Environ. Microbiol. 61, 1750–1756 (1995).

    Google Scholar 

  44. Y. A. Hamdi, “Vertical Movement of Rhizobia in Soil,” Zbl. Bakt. Abt. II 129, 373–377 (1974).

    Google Scholar 

  45. R. W. Harvey and S. P. Garabedian, “Use of Colloidal Filtration Theory in Modeling Movement of Bacteria through a Contaminated Sandy Aquifer,” Environ. Sci. Technol. 24, 178–185 (1991).

    Article  Google Scholar 

  46. R. W. Harvey, N. E. Kinner, A. Bunn, et al., “Transport Behavior of Groundwater Protozoa and Protozoan-Size Microspheres in Sandy Aquifer Sediments,” Appl. Environ. Microbiol. 61, 209–217 (1995).

    Google Scholar 

  47. M. J. Hendry, J. R. Lawrence, and P. Maloszewski, “Effects of Velocity on the Transport of Two Bacteria through Saturated Sand,” Groundwater 37 (1), 103–112 (1999).

    Google Scholar 

  48. J. P. Herzig, D. M. Leclerc, and P. LeGolf, “Flow of Suspensions through Porous Media: Application to Deep Filtration,” Ind. Eng. Chem. 62, 8–35 (1970).

    Article  Google Scholar 

  49. C. J. Hurst, “Survival of Enteroviruses in Rapid-Infiltration Basins during the Land Application of Waste Water,” Appl. Environ. Microbiol. 40, 192–200 (1980).

    Google Scholar 

  50. O. H. Jacobsen, P. Moldrup, C. Larsen, et al., “Particle Transport in Macropores of Undisturbed Soil Columns,” J. Hydrol. 196, 185–203 (1997).

    Article  Google Scholar 

  51. A. Jackson, D. Roy, and G. Brietenbeck, “Transport of a Bacterial Suspension through a Soil Matrix Using Water and an Anionic Surfactant,” Water Res. 28, 943–949 (1994).

    Article  Google Scholar 

  52. G. E. Jenneman, R. M. Knapp, M. J. McInerey, et al., “Experimental Studies of In-Situ Microbial Enhanced Oil Recovery,” Soc. Petrol. Eng. J. 24, 33–37 (1984).

    Google Scholar 

  53. Y. Jin and M. Flury, “Fate and Transport of Viruses in Porous Media,” Adv. Agron. 77, 39–84 (2002).

    Google Scholar 

  54. W. P. Johnson and B. E. Logan, “Enhanced Transport of Bacteria in Porous Media by Sediment-Phase and Aqueous-Phase Natural Organic Matter,” Water Res. 30, 923–931 (1996).

    Article  Google Scholar 

  55. D. I. Kaplan, P. M. Bertsch, D. C. Adriano, and W. P. Miller, “Soil-Borne Mobile Colloids as Influenced by Water Flow and Organic Carbon,” Environ. Sci. Technol. 27, 1193–1200 (1993).

    Article  Google Scholar 

  56. T. Kinoshita, R. C. Bales, and M. T. Yahya, “Bacterial Transport in a Porous Medium: Retention of Bacillus and Pseudomonas on Silica Surfaces,” Water Res. 27, 1295–1301 (1993).

    Article  Google Scholar 

  57. H. M. Lappin-Scott, F. Cusack, and J. W. Costerton, “Nutrient Resuscitation and Growth of Starved Cells in Sandstone Cores: A Novel Approach to Enhanced Oil Recovery,” Appl. Environ. Microbiol. 54, 1373–1382 (1988).

    Google Scholar 

  58. J. J. Lenhart and J. E. Saiers, “Transport of Silica Colloids through Unsaturated Porous Media: Experimental Results and Model Comparisons,” Environ. Sci. Technol. 36, 769–777 (2002).

    Article  Google Scholar 

  59. Q. Li and B. E. Logan, “Enhancing Bacterial Transport for Bioaugmentation of Aquifers Using Low Ionic Strength Solutions and Surfactants,” Water Res. 33, 1090–1100 (1999).

    Article  Google Scholar 

  60. G. Matthess and A. Pekdeger, “Concepts of a Survival and Transport Model of Pathogenic Bacteria and Viruses in Groundwater,” Sci. Total. Environ. 21, 149–159 (1981).

    Article  Google Scholar 

  61. J. F. McCarthy and J. M. Zachara, “Subsurface Transport of Contaminants,” Environ. Sci. Technol. 23, 469–502 (1989).

    Google Scholar 

  62. M. B. McGechan and D. R. Lewis, “Transport of Particulate and Colloid-Sorbed Contaminants through Soil. Part 1: General Principles,” Biosyst. Eng. 83, 255–273 (2002).

    Article  Google Scholar 

  63. A. L. Mills, J. S. Herman, G. M. Hornberger, and T. H. DeJesus, “Effect of Solution Ionic Strength and Iron Coatings on Mineral Grains on Sorption of Bacterial Cells to Quartz Sand,” Appl. Environ. Microbiol. 60, 3300–3306 (1994).

    Google Scholar 

  64. F.J. Molz, M. A. Widdowson, and L. D. Benefield, “Simulation of Microbial Growth Dynamics Coupled to Nutrient and Oxygen Transport in Porous Media,” Water Resour. Res. 22, 1207–1216 (1986).

    Google Scholar 

  65. G. J. Moridis, Q. Hu, Y.-S. Wu, and G. S. Bodvarsson, “Preliminary 3-D Site-Scale Studies of Radioactive Colloid Transport in the Unsaturated Zone at Yucca Mountain, Nevada,” J. Contam. Hydrol. 60, 251–286 (2003).

    Article  Google Scholar 

  66. H. Morisaki, Y. Kasahara, and T. Hattori, “The Cell-Surface Charge of Fast-Growing and Slow-Growing Bacteria Isolated from Grassland Soil,” J. Gen. Appl. Microbiol. 39, 65–74 (1993).

    Google Scholar 

  67. R. F. Mueller, “Bacterial Transport and Colonization in Low Nutrient Environments,” Water Res. 30, 2681–2690 (1996).

    Article  Google Scholar 

  68. A. Natsch, C. Keel, J. Troxler, et al., “Importance of Preferential Flow and Soil Management in Vertical Transport of a Biocontrol Strain of Pseudomonas fluorescens in Structured Field Soil,” Appl. Environ. Microbiol. 62, 33–40 (1996).

    Google Scholar 

  69. D. T. Newby, I. L. Pepper, and R. M. Maier, “Microbial Transport,” in Environmental Microbiology (Academic, San Diego, 1999), pp. 145–173.

    Google Scholar 

  70. C. R. O’Melia and W. Stumm, “Theory of Water Filtration,” J. Am. Water Works Assoc. 59, 1393–1412 (1967).

    Google Scholar 

  71. J. L. Parke, R. Moen, A. D. Rovira, and G. D. Bowen, “Soil Water Flow Affects the Rhizosphere Distribution of a Seed-Borne Biological Control Agent, Pseudomonas fluorescens,” Soil Biol. Biochem. 18, 583–588 (1986).

    Article  Google Scholar 

  72. T. C. Peterson and R. C. Ward, “Development of a Bacterial Transport Model for Coarse Soils,” Water Resour. Bull. 25, 349–357 (1989).

    Google Scholar 

  73. D. K. Powelson, C. P. Gerba, and M. T. Yahya, “Virus Transport and Removal in Waste Water during Aquifer Recharge,” Water Res. 27, 583–590 (1993).

    Article  Google Scholar 

  74. D. K. Powelson and A. L. Mills, “Bacterial Enrichment at the Gas-Water Interface of a Laboratory Apparatus,” Appl. Environ. Microbiol. 62, 2593–2597 (1996).

    Google Scholar 

  75. D. K. Powelson and A. L. Mills, “Water Saturation and Surfactant Effects on Bacterial Transport in Sand Columns,” Soil Sci. 163, 694–704 (1998).

    Article  Google Scholar 

  76. H. L. Reddy and R. M. Ford, “Analysis of Biodegradation and Bacterial Transport: Comparison of Models with Kinetic and Equilibrium Bacterial Adsorption,” J. Contam. Hydrol. 22, 271–287 (1996).

    Article  Google Scholar 

  77. J. A. Redman, S. B. Grant, T. M. Olson, and M. K. Estes, “Pathogen Filtration, Heterogeneity, and Potable Reuse of Wastewater,” Environ. Sci. Technol. 35, 1798–1805 (2001).

    Article  Google Scholar 

  78. M. Rousseau, L. Di Pietro, R. Angulo-Jaramillo, et al., “Preferential Transport of Soil Colloidal Particles: Physicochemical Effects on Particle Mobilization,” Vadose Zone J., No. 3, 247–261 (2004).

  79. J. N. Ryan, T. H. Illangasekare, M. I. Litaro, and R. Shannon, “Particle and Plutonium Mobilization in Macroporous Soils during Rainfall Simulations,” Environ. Sci. Technol. 32, 476–482 (1998).

    Article  Google Scholar 

  80. J. E. Saiers, G. M. Hornberger, D. B. Gower, and J. S. Herman, “The Role of Moving Air-Water Interfaces in Colloid Mobilization within the Vadose Zone,” Geophys. Rev. Lett. 30, 2083 (2003).

    Article  Google Scholar 

  81. J. E. Saiers and J. J. Lenhart, “Ionic-Strength Effects on Colloid Transport and Interfacial Reactions in Partially Saturated Porous Media,” Water Resour. Res. 39, 1256 (2003).

    Article  Google Scholar 

  82. J. E. Saiers and J. J. Lenhart, “Colloid Mobilization and Transport within Unsaturated Porous Media under Transient-Flow Conditions,” Water Resour. Res. 39, 1019 (2003).

    Article  Google Scholar 

  83. A. Schafer, P. Ustohal, H. Harms, et al., “Transport of Bacteria in Unsaturated Porous Media,” J. Contam. Hydrol. 33, 149–169 (1998).

    Article  Google Scholar 

  84. J. S. Selker, C. K. Keller, and J. T. McCord, Vadose Zone Processes (Lewis, Boca Raton, FL, 1999).

    Google Scholar 

  85. K. Schelde, P. Moldrup, O. H. Jacobsen, et al., “Diffusion-Limited Mobilization and Transport of Natural Colloids in Macroporous Soil,” Vadose Zone J., No. 1, 125–136 (2002).

  86. S. Sirivithayapakorn and A. Keller, “Transport of Colloids in Unsaturated Porous Media: A Pore-Scale Observation of Processes during the Dissolution of the Air-Water Interface,” Water Resour. Res. 39, 1346 (2003).

    Article  Google Scholar 

  87. M. S. Smith, G. W. Thomas, R. E. White, and D. Ritonga, “Transport of Escherichia coli through Intact and Disturbed Soil Columns,” J. Environ. Qual. 14, 87–91 (1984).

    Article  Google Scholar 

  88. S. P. Story, P. S. Amy, C. W. Bishop, and F. S. Colwell, “Bacterial Transport in Volcanic Tuff Cores under Saturated Flow Conditions,” Geomicrobiol. J. 13, 249–264 (1995).

    Article  Google Scholar 

  89. J. F. Sykes, S. Soyupak, and G. J. Farquhar, “Modeling of Leachate Organic Migration and Attenuation in Groundwaters below Sanitary Landfills,” Water Resour. Res. 18, 135–145 (1982).

    Article  Google Scholar 

  90. Y. Tan, W. J. Bond, A. D. Rovira, et al., “Movement through Soil of a Biological Control Agent, Pseudomonas fluorescens,” Soil Biol. Biochem. 23, 821–825 (1991).

    Article  Google Scholar 

  91. Y. Tan, J. G. Gannon, P. Baveye, and M. Alexander, Transport of Bacteria in a Saturated Aquifer Sand, Water Resour. Res. 30, 3243–3252 (1994).

    Article  Google Scholar 

  92. S. W. Taylor and P. R. Jaffe, “Substrate and Biomass Transport in a Porous Medium,” Water Resour. Res. 26, 2181–2194 (1990).

    Article  Google Scholar 

  93. S. W. Taylor and P. R. Jaffe, “Biofilm Growth and the Related Changes in the Physical Properties of a Porous Medium: 3. Dispersivity and Model Verification,” Water Resour. Res. 26, 2171–2181 (1990).

    Article  Google Scholar 

  94. D. M. Updegraff and G. B. Wren, “The Release of Oil from Petroleum-Bearing Materials by Sulfate-Reducing Bacteria,” Appl. Microbiol. 2, 309–322 (1954).

    Google Scholar 

  95. M. C. M. van Loosdrecht, J. Lyklema, W. Norde, and A. J. B. Zehnder, “Bacterial Adhesion: A Physicochemical Approach,” Microb. Ecol. 17, 1–15 (1989).

    Article  Google Scholar 

  96. P. M. van Schie and M. Fletcher, “Adhesion of Biodegradative Anaerobic Bacteria to Solid Surfaces,” Appl. Environ. Microbiol. 65, 5082–5088 (1999).

    Google Scholar 

  97. J. Wan and T. K. Tokunaga, “Partitioning of Clay Colloids at Air-Water Interfaces,” J. Colloid Interface Sci. 247, 54–61 (2002).

    Article  Google Scholar 

  98. J. Wan and J. L. Wilson, “Visualization of the Role of the Gas-Water Interface on the Fate and Transport of Colloids in Porous Media,” Water Resour. Res. 30, 11–23 (1994).

    Article  Google Scholar 

  99. J. Wan and J. L. Wilson, “Colloid Transport in Unsaturated Porous Media,” Water Resour. Res. 30, 857–864 (1994).

    Article  Google Scholar 

  100. J. E. Watson and W. R. Gardner, “A Mechanistic Model of Bacterial Colony Growth Response to Substrate Supply,” in Chapman Conference on Microbial Processes in the Transport, Fate, and in Situ Treatment of Subsurface Contaminants, Snowbird, Utah, 1986 (Snowbird, 1986).

  101. T. H. Weiss, A. L. Mills, and G. M. Hornberger, “Effect of Bacterial Cell Shape on Transport of Bacteria in Porous Media,” Environ. Sci. Technol. 29, 1737–1740 (1995).

    Google Scholar 

  102. E. R. White, “The Transport of Chloride and Nondiffusible Solutes through Soil,” Irrigat. Sci. 6 (1) (1985).

  103. K. Yao, M. T. Habibian, and C. R. O’Melia, “Water and Wastewater Filtration: Concepts and Application,” Environ. Sci. Technol. 5, 1105–1112 (1971).

    Article  Google Scholar 

  104. M. V. Yates and S. R. Yates, “Modeling Microbial Fate in the Subsurface Environment,” CRC Crit. Rev. Environ. Control 17, 307–344 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.V. Shein, B.A. Devin, 2007, published in Pochvovedenie, 2007, No. 4, pp. 438–449.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shein, E.V., Devin, B.A. Current problems in the study of colloidal transport in soil. Eurasian Soil Sc. 40, 399–408 (2007). https://doi.org/10.1134/S1064229307040059

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229307040059

Keywords

Navigation