Skip to main content
Log in

On the Principle of Causality and Superluminal Signal Propagation Velocities

  • ELECTRODYNAMICS AND WAVE PROPAGATION
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

This paper considers the question of superluminal (or negative) group velocities of signals in dispersive media, as well as negative group delay times of signals passing through linear filters. It is shown that information can be transmitted only with the help of jumps in the time dependence of a function or its derivatives and, therefore, the information propagation velocity in any (including dispersive, absorbing, or amplifying) medium exactly coincides with the speed of light in vacuum. As for the group velocity of a wave packet, it is only the propagation velocity of its infinitely differentiable envelope, by means of which the transmission of information, strictly speaking, is impossible. Therefore, in regions with anomalous dispersion, the group velocity can be superluminal or negative without violating the “light limitation” of the theory of relativity or the principle of causality. Examples of situations in which superluminal or negative group velocity occurs are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. This article is not a review; therefore the list of references is, of course, incomplete; for a review on the topic, see [37, 39].

  2. More precisely, a function that can be expanded in a power series with a nonzero radius of convergence.

  3. In other words, all information about the time dependence of such a signal beyond any particular finite time interval is redundant: it can be reconstructed from the time dependence within this interval.

  4. The growth of the precursors, clearly visible in the graphs, is actually apparent: the precursors will just retain their amplitude. It’s just that, as the path length grows, they seem to get larger against the background of an exponentially decaying signal.

  5. It would be more correct to call them analytic (in the sense of the theory of analytic functions). But the term “analytic signal” is already engaged, and the mathematical terms “holonomic function” and “analytic function” are practically identical.

  6. This conclusion is sometimes criticized: see, e.g., [74].

  7. In essence, we are talking about the Heisenberg uncertainty principle \(\Delta E\Delta t \approx h\), where \(\Delta E\) is the pulse energy and \(\Delta t\) is the minimum possible duration of its front.

REFERENCES

  1. M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, The Theory of Waves (Nauka, Moscow, 1990) [in Russian].

    MATH  Google Scholar 

  2. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Nauka, Moscow, 1973; Pergamon Press, Oxford, 1975).

  3. Physical Encyclopedic Dictionary (Sov. Entsiklopediya, Moscow, 1984) [in Russian].

  4. Physical Encyclopedia (Sov. Entsiklopediya, Moscow, 1984), Vol. 1. [in Russian].

  5. G. G. B. Garrett and D. E. McCumber, Phys. Rev. A 1, 305 (1970).

    Article  Google Scholar 

  6. L. A. Vainshtein, Usp. Fiz. Nauk 118, 339 (1976).

    Article  Google Scholar 

  7. S. Chu and S. Wong, Phys. Rev. Lett. 48, 738 (1982).

    Article  Google Scholar 

  8. B. Macke, Opt. Commun. 49, 307 (1984).

    Article  Google Scholar 

  9. B. Segard and B. Macke, Phys. Lett. A 109 (5), 213 (1985).

    Article  Google Scholar 

  10. A. N. Oraevskii, Usp. Fiz. Nauk 168, 1311 (1998).

    Article  Google Scholar 

  11. M. W. Mitchell and R. Y. Chiao, Am. J. Phys. 66, 14 (1998).

    Article  Google Scholar 

  12. L. J. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000).

    Article  Google Scholar 

  13. N. S. Bukhman, Kvant. Elektron. 31, 774 (2001).

    Article  Google Scholar 

  14. M. A. I. Talukder, Y. Amagishi, and M. Timita, Phys. Rev. Lett. 86 (16), 3546 (2001).

    Article  Google Scholar 

  15. A. Dogariu, A. Kuzmich, and L. J. Wang, Phys. Rev. A 63, 053806 (2001).

    Article  Google Scholar 

  16. A. M. Akul’shin, A. Chimmino, and Dzh. I. Opat, Kvant. Elektron. 32, 567 (2002).

    Google Scholar 

  17. T. Nakanishi, K. Sugiyama, and M. Kitano, Am. J. Phys. 70, 1117 (2002).

    Article  Google Scholar 

  18. N. S. Bukhman, Tech. Phys. 47, 132 (2002).

    Article  Google Scholar 

  19. B. Macke and B. Ségard, Eur. Phys. J., D: Atomic, Molecular, Opt. Phys. 23 (1), 125 (2003).

    Google Scholar 

  20. N. S. Bukhman, Tech. Phys. Lett. 29, 784 (2003).

    Article  Google Scholar 

  21. N. S. Bukhman, Kvant. Elektron. 34, 299 (2004).

    Article  Google Scholar 

  22. N. S. Bukhman, Kvant. Elektron. 34, 120 (2004).

    Article  Google Scholar 

  23. N. S. Bukhman and S. V. Bukhman, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 47, 75 (2004).

    Google Scholar 

  24. N. S. Bukhman, Opt. & Spectros. 96, 626 (2004).

    Article  Google Scholar 

  25. N. S. Bukhman, Opt. & Spectros. 97, 114 (2004).

    Article  Google Scholar 

  26. A. M. Akulshin, A. I. Sidorov, R. J. McLean, and P. Hannaford, Laser Phys. 15 (9), 1252 (2005).

    Google Scholar 

  27. I. O. Zolotovskii and D. I. Sementsov, Opt. & Spectros. 99, 81 (2005).

    Article  Google Scholar 

  28. N. S. Bukhman, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 48, 631 (2005).

    Google Scholar 

  29. N. S. Bukhman, Tech. Phys. 50, 1 (2005).

    Article  Google Scholar 

  30. N. S. Bukhman, Tech. Phys. 50, 1632 (2005).

    Article  Google Scholar 

  31. I. O. Zolotovskii and D. I. Sementsov, Opt. & Spectros. 101, 114 (2006).

    Article  Google Scholar 

  32. N. S. Bukhman, Tech. Phys. 51, 1608 (2006).

    Article  Google Scholar 

  33. N. S. Bukhman, J. Commun. Technol. Electron. 52, 555 (2007).

    Article  Google Scholar 

  34. B. Macke and B. Ségard, Phys. Rev. A: Atomic, Molecular, Opt. Phys. 82, 023816 (2010).

    Google Scholar 

  35. A. M. Akulshin and R. J. McLean, J. Opt. 12, 104001 (2010).

    Article  Google Scholar 

  36. V. Y. Fedorov and T. Nakajima, Phys. Rev. Lett. 107, 143903 (2011).

    Article  Google Scholar 

  37. G. B. Malykin and E. A. Romanets, Opt. & Spectrosk. 112, 920 (2012).

    Article  Google Scholar 

  38. I. O. Zolotovskii, R. N. Minvaliev, and D. I. Sementsov, Usp. Fiz. Nauk. 183, 1353 (2013).

    Article  Google Scholar 

  39. B. Macke and B. Ségard, Phys. Rev. A: Atomic, Molecular, Opt. Phys. 91, 053814 (2015).

    Google Scholar 

  40. N. S. Bukhman, J. Commun. Technol. Electron. 61, 1327 (2016).

    Article  Google Scholar 

  41. N. S. Bukhman, J. Commun. Technol. Electron. 64, 203 (2019).

    Article  Google Scholar 

  42. A. S. Kryukovskii and I. V. Zaichikov, Vest. Ros. NOU. Ser. Slozhnye Sist.: Modeli, Analiz i Upravl., No. 2, 17 (2007).

  43. A. S. Kryukovskii and I. V. Zaichikov, Elektromagn. Volny i Elektron. Sist. 13 (8), 36 (2008).

    Google Scholar 

  44. I. V. Allin and A. S. Kryukovskii, Elektromagn. Volny i Elektron. Sist. 12 (8), 26 (2007).

    Google Scholar 

  45. B. Macke and B. Ségard, Phys. Rev. A: Atomic, Molecular, Opt. Phys. 94, 043801 (2016).

    Google Scholar 

  46. N. S. Bukhman, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 60, 467 (2017).

    Google Scholar 

  47. B. Macke and B. Ségard, Phys. Rev. A: Atomic, Molecular, Opt. Phys. 81, 015803 (2010).

    Google Scholar 

  48. B. Macke and B. Ségard, Phys. Rev. A: Atomic, Molecular, Opt. Phys. 80, 011803 (2009).

    Google Scholar 

  49. B. Macke and B. Ségard, Phys. Rev. A: Atomic, Molecular, Opt. Phys. 97, 063830 (2018).

    Google Scholar 

  50. B. Ravelo, Microwaves Antennas Propag. 12 (1), 137 (2018).

    Article  Google Scholar 

  51. B. Ravelo, Circuits, Devices, Syst. 12 (2), 175 (2018).

    Google Scholar 

  52. F. Wan, L. Wang, Q. Ji, and B. Ravelo, IET Circuits, Devices, Syst. 13 (2), 125 (2019).

    Article  Google Scholar 

  53. F. Wan, N. Li, J. Ge, B. Ravelo, and B. Li, IEEE Trans. Circuits Syst. 66, 562 (2019).

    Article  Google Scholar 

  54. B. Ravelo, Intern. J. RF and Microwave Computer-Aided Eng. 28 (9), 21414 (2018).

    Google Scholar 

  55. B. Ravelo, IEEE Trans. Circuits Syst. 64, 1052 (2017).

    Article  Google Scholar 

  56. B. Ravelo, S. Lalléchère, A. Thakur, et al., AEU–Int. J. Electron. Commun. 70, 1122 (2016).

    Google Scholar 

  57. B. Ravelo, IEEE Trans. Microwave Theory Tech. 64 (11), 3604 (2016).

    Article  Google Scholar 

  58. B. Ravelo, IEEE Trans. Circuits Syst. 63, 738 (2016).

    Article  Google Scholar 

  59. B. Ravelo, AEU–Int. J. Electron. Commun. 68, 282 (2014).

    Google Scholar 

  60. B. Ravelo, Adv. Electromagn. 2 (1), 73 (2013).

    Article  Google Scholar 

  61. B. Ravelo, Adv. Electromagn. 2 (1), 44 (2013).

    Article  Google Scholar 

  62. B. Macke and B. Ségard, Phys. Rev. A: Atomic, Molecular, Opt. Phys. 86, 013837 (2012).

    Google Scholar 

  63. B. Ravelo, Electromagn. 31, 537 (2011).

    Article  Google Scholar 

  64. B. Ravelo and S. De Blasi, J. Microwaves, Optoelectron. Electromagn. Appl. 10, 355 (2011).

    Article  Google Scholar 

  65. B. Macke and B. Ségard, Opt. Commun. 281 (1), 12 (2008).

    Article  Google Scholar 

  66. B. Macke and B. Ségard, Phys. Rev. A: Atomic, Molecular, Opt. Phys. 73 (4), 1 (2006).

    Google Scholar 

  67. N. S. Bukhman, in Dokl. 5th All-Russian Microwave Conf., Moscow, 2017 (IRE RAN, Moscow, 2017), p. 15.

  68. N. S. Bukhman, in Dokl. 5th All-Russian Microwave Conf., Moscow, 2017 (IRE RAN, Moscow, 2017), p. 20.

  69. N. S. Bukhman, in Dokl. 5th All-Russian Microwave Conf., Moscow, 2017 (IRE RAN, Moscow, 2017), p. 25.

  70. N. S. Bukhman, Causality Principle, Non-anthropogenic Prediction and Superluminal Propagation Rate (SGASU, Samara, 2005) [in Russian].

    Google Scholar 

  71. N. S. Bukhman, Narrowband Signal Propagation in Highly Dispersing Medium (SGASU, Samara, 2004) [in Russian].

    Google Scholar 

  72. V. I. Smirnov, The Course of Higher Mathematics (Gostekhteorizdat, Moscow, 1957; Addison-Wesley, Reading, Mass., 1964), Vol. 3, Part 2.

  73. D. V. Vasil’ev, M. R. Vitol’, Yu. N. Gorshenkov, et al., Radio Circuits and Signals (Radio i Svyaz’, Moscow, 1982) [in Russian].

    Google Scholar 

  74. M. V. Davidovich, Tech. Phys. 57, 328 (2012).

    Article  Google Scholar 

  75. N. S. Bukhman, Opt. & Spectros. 123, 783 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Bukhman.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukhman, N.S. On the Principle of Causality and Superluminal Signal Propagation Velocities. J. Commun. Technol. Electron. 66, 227–241 (2021). https://doi.org/10.1134/S1064226921030049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226921030049

Navigation