Skip to main content
Log in

Recognition of Anthropogenic 3D Objects on an Underlying Surface by Intelligent Analysis of a Polarization Scattering Matrix

  • THEORY AND METHODS OF SIGNAL PROCESSING
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

This paper proposes a technique for recognizing anthropogenic location objects on an underlying surface that is based on measuring the complete polarization scattering matrix (PSM) of a radiolocation scene. The intelligent analysis of a PSM implies the generation of adaptive robust estimates for trends and covariance matrices, as well as reflected non-stationary non-Gaussian signals. Based on the results of the digital computer simulation experiments and field measurements of the radiolocation scene’s PSM, machine learning algorithms for clustering and classifying the elements of an underlying surface and location object are verified. The possibility of using neural network architecture in the form of a support vector machine for real-time implementation of these algorithms is substantiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. D. B. Kanareikin, N. F. Pavlov, and V. A. Potekhin, Polarization of Radar Signals (Sovetskoe Radio, Moscow, 1966) [in Russian].

    Google Scholar 

  2. A. Z. Kiselev, The Theory of Radar Detection on the Basis of Use of a Vector of Dispersion of the Purposes (Radio i Svyaz’, Moscow, 2002) [in Russian].

    Google Scholar 

  3. V. N. Tatarinov, S. V. Tatarinov, and L. P. Ligtkhart, Introduction to the Modern Theory of Radar Signals, Vol. 1: Polarization of Plane Electromagnetic Waves and Its Transformation (Tomsk. Univ., Tomsk, 2006) [in Russian].

  4. D. Giuli, IEEE Trans. Antennas Propag. 74, 245 (1986).

    Google Scholar 

  5. Y. Yamaguchi, A. Sato, W.-M. Boerner, R. Sato, and H. Yamada, IEEE Trans. Geosci. Remote Sens. 49, 2251 (2011).

    Article  Google Scholar 

  6. R. V. Ostrovityanov and F. A. Basalov, Statistical Theory of a Radar-Location of the Extended Purposes (Radio i Svyaz’, Moscow, 1982) [in Russian].

    Google Scholar 

  7. A. B. Borzov, G. L. Pavlov, V. B. Suchkov, et al., Elektromag. Volny & Elektron. Sist. 15 (1), 11 (2010).

    Google Scholar 

  8. A. B. Borzov, Millimetric Radar-Location. Methods of Detection and Targeting in the Conditions of Natural and Organized Hindrances (Radiotekhnika, Moscow, 2010) [in Russian].

    Google Scholar 

  9. A. B. Borzov, G. L. Pavlov, V. B. Suchkov, et al., Elektromag. Volny & Elektron. Sist. 15 (7), 27 (2010).

    Google Scholar 

  10. V. V. Akhiyarov, A. B. Borzov, and V. B. Suchkov, Elektromag. Volny & Elektron. Sist. 19 (3), 49 (2014).

    Google Scholar 

  11. A. B. Borzov, V. B. Suchkov, B. I. Shakhtarin, and Yu. A. Sidorkina, J. Commun. Technol. Electron. 49, 1356 (2014).

    Article  Google Scholar 

  12. S. A. Aivazyan, I. S. Enyukov, and L. D. Meshalkin, Applied Statistics: Research of Dependences (Finansy i Statistika, Moscow, 1985) [in Russian].

    Google Scholar 

  13. A. M. Shurygin, Applied Stochastics: Robustness, Estimation, Forecast (Finansy i Statistika, Moscow, 2000) [in Russian].

    MATH  Google Scholar 

  14. S. R. Cloude and E. Pottier, IEEE Trans. Geosci. Remote Sens. 34, 498 (1996).

    Article  Google Scholar 

  15. A. Freeman, Y. Shen, and C. L. Werner, IEEE Trans. Geosci. Remote Sens. 28, 224 (1990).

    Article  Google Scholar 

  16. J. T. Tou and R. C. Gonzalez, Pattern Recognition Principles (Addison-Wesley, London, 1974; Mir, Moscow, 1978).

  17. S. Khaikin, Neural Networks: Full Course, 2nd ed. (ID Vil’yams, Moscow, 2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Labunets.

Additional information

Translated by Yu. Kornienko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borzov, A.B., Labunets, L.V., Pavlov, G.L. et al. Recognition of Anthropogenic 3D Objects on an Underlying Surface by Intelligent Analysis of a Polarization Scattering Matrix. J. Commun. Technol. Electron. 65, 815–825 (2020). https://doi.org/10.1134/S1064226920060078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226920060078

Navigation