Skip to main content
Log in

Fundamental Limitations on Miniaturization of Shape-Memory Micromechanical Devices. Thermoelastic Martensite Transformation on Micro-, Nano-, and Mesoscales

  • Nanoelectronics
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

TEM measurements are used to experimentally study thermoelastic martensite transformation in Ti2NiCu tapered plates. The martensite phase is observed at room temperature in the Ti2NiCu alloy when the plate thickness decreases to, at least, 80 nm, and the austenite phase is observed at smaller thicknesses. It is shown that the temperature of thermoelastic martensite transition in the Ti2NiCu alloy decreases with a decrease in the thickness of the plate, the transition is blocked at a thickness of less than 20 nm, and a hysteresis dependence is observed. Possible physical and technological reasons for blocking of the martensite phase transition on nanoscale and fundamental limitations on the sizes of micromechanical devices based on the shape-memory Ti2NiCu alloy are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. V. Kurdyumov and L. G. Khandros, Dokl. Akad. Nauk SSSR 66, 211 (1949).

    Google Scholar 

  2. I. E. Dikshten, D. I. Ermakov, V. V. Koledov, L. V. Koledov, T. Takagi, A. A. Tulakova, A. A. Cherechukin, and V. G. Shavrov, JETP Lett. 72, 373 (2000).

    Article  Google Scholar 

  3. V. N. Khachin, V. G. Pushin, and V. V. Kondrat’ev, Structure and Properties (Nauka, Moscow, 1992), p. 160 [in Russian].

    Google Scholar 

  4. A. A. Cherechukin, I. E. Dikshtein, D. I. Ermakov, et al., Phys. Lett. A 291, 175 (2000).

    Article  Google Scholar 

  5. G. A. Malygin, Tech. Phys. 54, 1782 (2009).

    Article  Google Scholar 

  6. C. Kexel, S. Schramm, and V. Solov’yov, Eur. Phys. J. 88, 221 (2015).

    Article  Google Scholar 

  7. S. Kajiwara, S. Ohno, and K. Honma, Philos. Mag. 63, 625 (1991).

    Article  Google Scholar 

  8. A. M. Glezer, E. N. Blinova, V. A. Pozdnyakov, and A. V. Shelyakov, J. Nanoparticle Res. 5, 551 (2003).

    Article  Google Scholar 

  9. Juan J. M. San, M. L. Nó, and C. A. Schuh, Adv. Mater. 20, 272 (2008).

    Article  Google Scholar 

  10. H. Ghassemi-Armaki, A. C. Leff, M. L. Taheri, et al., Acta Mater. 136, 134 (2017).

    Article  Google Scholar 

  11. A. V. Irzhak, V. S. Kalashnikov, V. V. Koledov, D. S. Kuchin, G. A. Lebedev, P. V. Lega, N. A. Pikhtin, I. S. Tarasov, V. G. Shavrov, and A. V. Shelyakov, Tech. Phys. Lett. 36, 329 (2010).

    Article  Google Scholar 

  12. A. V. Irzhak, D. I. Zakharov, V. S. Kalashnikov, V. V. Koledov, D. S. Kuchin, G. A. Lebedev, P. V. Lega, E. P. Perov, N. A. Pikhtin, V. G. Pushin, I. S. Tarasov, V. V. Khovailo, V. G. Shavrov, and A. V. Shelyakov, J. Commun. Technol. Electron. 55, 818 (2010).

    Article  Google Scholar 

  13. A. V. Shelyakov, N. N. Sitnikov, V. V. Koledov, et al., Int. J. Smart & Nano Mater. 2, 68 (2011).

    Article  Google Scholar 

  14. P. V. Lega, V. V. Koledov, A. P. Orlov, D. S. Kuchin, et al., Adv. Eng. Mater. 19 (8), 1700154 (2017).

    Article  Google Scholar 

  15. A. V. Irzhak, P. V. Lega, A. M. Zhikharev, V. V. Koledov, A. P. Orlov, D. S. Kuchin, N. Yu. Tabachkova, V. A. Dikan, A. V. Shelyakov, M. Yu. Beresin, V. G. Pushin, S. V. von Gratowski, V. Ya.Pokrovskiy, S. G. Zybtsev and V. G. Shavrov, Dokl. Phys. 62, 5 (2017).

    Article  Google Scholar 

  16. N. M. Matveeva, V. G. Pushin, A. V. Shelyakov, et al., Fiz. Met. Metallogr. (FMM) 83 (6), 82 (1997).

    Google Scholar 

  17. S. C. Mao, H. X. Li, Y. Liu, et al., J. All. Comp. 579, 100 (2013).

    Article  Google Scholar 

  18. S. Gur and G. N. Frantziskonis, Smart Mater. Res., 7512642 (2016).

    Google Scholar 

  19. B. T. H. Nam, T. Saburi, Y. Nakata, and K. Shimizu, Mater. Trans. 31, 1050 (1990).

    Article  Google Scholar 

  20. G. Pan, Z. Cao, M. Wei, and J. Shi, Mater. Lett. 130, 285 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Lega.

Additional information

Original Russian Text © P.V. Lega, V.V. Koledov, N.Yu. Tabachkova, A.V. Irzhak, A.V. Shelayakov, D.S. Kuchin, A.P. Orlov, V.G. Shavrov, 2018, published in Radiotekhnika i Elektronika, 2018, Vol. 63, No. 5, pp. 463–470.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lega, P.V., Koledov, V.V., Tabachkova, N.Y. et al. Fundamental Limitations on Miniaturization of Shape-Memory Micromechanical Devices. Thermoelastic Martensite Transformation on Micro-, Nano-, and Mesoscales. J. Commun. Technol. Electron. 63, 468–475 (2018). https://doi.org/10.1134/S1064226918050066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226918050066

Navigation