Skip to main content
Log in

High-symmetry DC SQUID based on the Nb/AlO x /Nb Josephson junctions for nondestructive evaluation

  • Novel Radio Systems and Elements
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

Topology of high-symmetry thin-film SQUIDs based on the Nb/AlO x /Nb tunneling junctions is developed and optimized. The devices exhibit relatively low sensitivity to static external field and electric interference. An experimentally implemented SQUID sensor with an integrated input coil with a sensitivity of 0.26 μA/Ф0 exhibits an intrinsic noise with respect to magnetic flux of less than \(5\mu {\Phi _0}/\sqrt {Hz} \). A system for encapsulation of sensors is developed for applications in multichannel systems for nondestructive evaluation of materials and alternative diagnostic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. G. Jenks, S. S. H. Sadeghi, and J. P. Wikswo, Jr., J. Phys. D: Appl. Phys. 30, 293 (1997).

    Article  Google Scholar 

  2. H. Weinstock, IEEE Trans. Magn. 27, 3231 (1991).

    Article  Google Scholar 

  3. J. Clarke and A. I. Braginski, The SQUID Handbook: Applications of SQUIDs and SQUID Systems (Wiley, Hoboken, 2006).

    Book  Google Scholar 

  4. M. B. Ketchen and T. J. Watson, IEEE Trans. Magn. 27, 2916 (1991).

    Article  Google Scholar 

  5. M. Ketchen, D. J. Pearson, K. Stawiasz, et al., IEEE Trans. Appl. Supercond. 3, 1795 (1993).

    Article  Google Scholar 

  6. V. P. Koshelets, A. N. Matlashov, I. L. Serpuchenko, et al., IEEE Trans. Magn. 25, 1182 (1989).

    Article  Google Scholar 

  7. M. B. Simmonds, US Patent No. 5053834 (1991).

    Google Scholar 

  8. E. A. Kostyurina, K. V. Kalashnikov, L. V. Filippenko, and V. P. Koshelets, Phys. Solid State 58, 2203 (2016).

    Article  Google Scholar 

  9. J. Knuutila, M. Kajola, H. Seppa, et al., J. Low Temp. Phys. 71, 369 (1988).

    Article  Google Scholar 

  10. L. V. Filippenko, S. V. Shitov, P. N. Dmitriev, et al., IEEE Trans. Appl. Supercond. 11, 816 (2001).

    Article  Google Scholar 

  11. K. Enpuku, R. Cantor, and H. Koch, J. Appl. Phys. 72, 1000 (1992).

    Article  Google Scholar 

  12. E. V. Burmistrov, V. Yu. Slobodchikov, V. V. Khanin, Yu. V. Maslennikov, and O. V. Snigirev, J. Commun. Technol. Electron. 53, 1259 (2008).

    Article  Google Scholar 

  13. V. Schultze, R. Stolz, R. Ijsselsteijn, et al., IEEE Trans. Appl. Supercond. 7, 3473 (1997).

    Article  Google Scholar 

  14. Y. V. Maslennikov, M. A. Primin, V. Y. Slobodchikov, et al., Phys. Procedia. 36, 88 (2012).

    Article  Google Scholar 

  15. W. Jaszczukt, H. J. M. ter Brake, J. Flokstra, et al., Meas. Sci. Technol. 2, 1121 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kostyurina.

Additional information

Original Russian Text © E.A. Kostyurina, K.V. Kalashnikov, L.V. Filippenko, O.S. Kiselev, V.P. Koshelets, 2017, published in Radiotekhnika i Elektronika, 2017, Vol. 62, No. 11, pp. 1142–1147.

This work was awarded at the Anisimkin Contest for young scientists in 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostyurina, E.A., Kalashnikov, K.V., Filippenko, L.V. et al. High-symmetry DC SQUID based on the Nb/AlO x /Nb Josephson junctions for nondestructive evaluation. J. Commun. Technol. Electron. 62, 1306–1310 (2017). https://doi.org/10.1134/S1064226917110109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226917110109

Navigation