Skip to main content
Log in

Changes in the Ferromagnetic Resonance Spectra and Magnetic Anisotropy of the [CoFeB/SiO2|Bi2Te3]47 Multilayer Heterostructures upon the Deposition of Fe/Fe3O4 Nanoparticles on Their Surface

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

An increase in the anisotropy constant of the [CoFeB/SiO2|Bi2Te3]47 heterostructure under the influence of magnetic Fe/Fe3O4 nanoparticles deposited on the surface of the heterostructure to 20 wt % is detected by ferromagnetic resonance. It is established that a layer of Fe/Fe3O4 nanoparticles with a thickness of about 27 nm on a diamagnetic GaAs substrate has its own magnetic anisotropy caused by the magnetic dipole interaction between the particles. A layer of nanoparticles bound by magnetic dipole interaction forms the equivalent magnetic film, the stray field of which changes the effective magnetic anisotropy of the [CoFeB/SiO2|Bi2Te3]47 heterostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. I. Koh and L. Josephson, Sensors 9, 8130 (2009).

    Article  ADS  Google Scholar 

  2. V. Fernandes Cardoso, A. Francesko, C. Ribeiro, M. Bañobre-López, P. Martins, and S. Lanceros-Mendez, Adv. Healthcare Mater. 7, 1700845 (2017).

    Article  Google Scholar 

  3. A. van de Walle, J. E. Perez, A. Abou-Hassan, M. Hemadi, N. Luciani, and C. Wilhelm, Mater. Today Nano 11, 100084 (2020).

    Article  Google Scholar 

  4. S. Ikeda, J. Hayakawa, Y. Ashizawa, Y. M. Lee, K. Miura, H. Hasegawa, M. Tsunoda, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 93, 082508 (2008).

    Article  ADS  Google Scholar 

  5. R. B. Morgunov, G. L. L’vova, A. D. Talantsev, Y. Lu, X. Devaux, S. Migot, O. V. Koplak, O. S. Dmitriev, and S. Mangin, Thin Solid Films 640, 8 (2017).

    Article  ADS  Google Scholar 

  6. R. B. Morgunov, O. V. Koplak, R. S. Allayarov, E. I. Kunitsyna, and S. Mangin, Appl. Surf. Sci. 527, 146836 (2020).

    Article  Google Scholar 

  7. E. I. Kunitsyna, R. S. Allayarov, O. V. Koplak, R. B. Morgunov, and S. Mangin, ACS Sens. 6, 4315 (2021).

    Article  Google Scholar 

  8. O. V. Dunets, Yu. E. Kalinin, M. A. Kashirin, and A. V. Sitnikov, Tech. Phys. 58, 1352 (2013).

    Article  Google Scholar 

  9. E. N. Kablov, O. G. Ospennikova, V. P. Piskorskii, D. V. Korolev, Yu. E. Kalinin, A. V. Sitnikov, E. I. Ku-nitsyna, A. D. Talantsev, V. L. Berdinskii, and R. B. Morgunov, Phys. Solid State 58, 1134 (2016).

    ADS  Google Scholar 

  10. E. P. Domashevskaya, N. S. Builov, V. A. Terekhov, K. A. Barkov, and V. G. Sitnikov, Phys. Solid State 59, 168 (2017).

    Article  ADS  Google Scholar 

  11. O. V. Gerashchenko, V. A. Ukleev, E. A. Dyad’kina, A. V. Sitnikov, and Yu. E. Kalinin, Phys. Solid State 59, 164 (2017).

    Article  ADS  Google Scholar 

  12. V. V. Rylkov, S. N. Nikolaev, V. A. Demin, A. V. Emelyanov, A. V. Sitnikov, K. E. Nikiruy, V. A. Levanov, M. Yu. Presnyakov, A. N. Taldenkov, A. L. Vasiliev, K. Yu. Chernoglazov, A. S. Vedeneev, Yu. E. Kalinin, A. B. Granovsky, V. V. Tugushev, and A. S. Bugaev, J. Exp. Theor. Phys. 126 (3), 353 (2018).

    Article  ADS  Google Scholar 

  13. K. E. Nikirui, A. V. Emel’yanov, V. A. Demin, V. V. Ryl’kov, A. V. Sitnikov, and P. K. Kashkarov, Tech. Phys. Lett. 44, 416 (2018).

    Article  ADS  Google Scholar 

  14. H. Al Azzawi, Yu. Kalinin, A. Sitnikov, and O. Tarasova, Solid State Phenom. 233–234, 467 (2015).

    Article  Google Scholar 

  15. V. Ukleev, E. Dyadkina, A. Vorobiev, O. V. Gerashchenko, L. Carond, and A. V. Sitnikov, J. Non-Cryst. Solids 432, 499 (2016).

    Article  ADS  Google Scholar 

  16. P. V. Finotelli, M. A. Morales, M. H. Rocha-Leão, E. M. Baggio-Saitovitch, and A. M. Rossi, Mater. Sci. Eng. C 24, 625 (2004).

    Article  Google Scholar 

  17. C. Kittel, Phys. Rev. 73, 155 (1948).

    Article  ADS  Google Scholar 

  18. G. S. Shahane, K. V. Zipare, and R. P. Pant, Magnetohydrodynamics 49, 317 (2013).

    Article  Google Scholar 

  19. A. Matsumoto, T. Sugiura, M. Kobashi, and S. Yamamoto, Mater. Trans. 61, 1404 (2020).

    Article  Google Scholar 

  20. E. Lima, Jr., A. L. Brandl, A. D. Arelaro, and G. F. Goya, J. Appl. Phys. 99, 083908 (2006).

    Article  ADS  Google Scholar 

  21. A. I. Bezverkhnii, A. D. Talantsev, Yu. E. Kalinin, A. V. Sitnikov, V. A. Nikitenko, O. V. Koplak, O. S. Dmitriev, and R. B. Morgunov, Phys. Solid State 61, 127 (2019).

    Article  ADS  Google Scholar 

Download references

Funding

This study was performed within the framework of thematic map AAAAA-A19-119092390079-8 for the Institute for Problems of Chemical Physics, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Morgunov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezverkhnii, A.I., Morgunov, R.B. Changes in the Ferromagnetic Resonance Spectra and Magnetic Anisotropy of the [CoFeB/SiO2|Bi2Te3]47 Multilayer Heterostructures upon the Deposition of Fe/Fe3O4 Nanoparticles on Their Surface. Phys. Solid State 64, 179–184 (2022). https://doi.org/10.1134/S1063783422050018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783422050018

Keywords:

Navigation