Skip to main content
Log in

Thermal stability of Pt nanoclusters interacting to carbon sublattice

  • Atomic Clusters
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The catalytic activity of Pt clusters is dependent not only on the nanoparticle size and its composition, but also on its internal structure. To determine the real structure of the nanoparticles used in catalysis, the boundaries of the thermal structure stability of Pt clusters to 8.0 nm in diameter interacting with carbon substrates of two types: a fixed α-graphite plane and a mobile substrate with the diamond structure. The effect of a substrate on the processes melting of Pt nanoclusters is estimated. The role of the cooling rate in the formation of the internal structure of Pt clusters during crystallization is studied. The regularities obtained in the case of “free” Pt clusters and Pt clusters on a substrate are compared. It is concluded that platinum nanoparticles with diameter D ≤ 4.0 nm disposed on a carbon substrate conserve the initial fcc structure during cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ch. Pool and F. Owens, Nanotechnologies (Tekhnosfera, Moscow, 2006; Wiley, Hoboken, NJ, 2003).

    Google Scholar 

  2. M. Metzler, A. Thorwart, S. Zeller, T. Diemant, R. J. Behm, and T. Jacob, Catal. Today 244, 3 (2014).

    Article  Google Scholar 

  3. I. F. Golovnev, E. I. Golovneva, and V. M. Fomin, Fiz. Mezomekh. 11 (2), 51 (2008).

    Google Scholar 

  4. C. Mottet, G. Rossi, F. Baletto, and F. Ferrando, Phys. Rev. Lett. 95, 035501 (2005).

    Article  ADS  Google Scholar 

  5. H. Akbarzadeh, H. Yaghoubi, A. N. Shamkhali, and F. Taherkhani, J. Phys. Chem. C 117, 26287 (2013).

    Article  Google Scholar 

  6. S. L. Gafner, L. V. Redel, and Yu. Ya. Gafner, J. Exp. Theor. Phys. 108, 784 (2009).

    Article  ADS  Google Scholar 

  7. Yu. Ya. Gafner, Zh. V. Goloven’ko, and S. L. Gafner, J. Exp. Theor. Phys. 116, 252 (2013).

    Article  ADS  Google Scholar 

  8. G. Liu, K. Yang, J. Li, W. Tang, J. Xu, H. Liu, R. Yue, and Y. Chen, J. Phys. Chem. C 118, 22719 (2014).

    Article  Google Scholar 

  9. I. Janowska, M. S. Moldovan, O. Ersen, H. Bulou, K. Chizari, M. J. Ledoux, and C. Pham-Huu, Nano Res. 4, 511 (2011).

    Article  Google Scholar 

  10. P. Xu, L. Dong, M. Neek-Amal, M. L. Ackerman, J. Yu, S. D. Barber, J. K. Schoelz, D. Qi, F. Xu, P. M. Thibado, and F. M. Peeters, ACS Nano 8, 2697 (2014).

    Article  Google Scholar 

  11. M. S. Moldovan, H. Bulou, Y. J. Dappe, I. Janowska, D. Bégin, C. Pham-Huu, and O. Ersen, J. Phys. Chem. C 116, 9274 (2012).

    Article  Google Scholar 

  12. E. Yoo, T. Okada, T. Akita, M. Kohyama, I. Honma, and J. Nakamuraa, J. Power Sources 196, 110 (2011).

    Article  ADS  Google Scholar 

  13. A. I. Frenkel, S. Nemzer, I. Pister, L. Soussan, T. Harris, Y. Sun, and M. H. Rafailovich, J. Chem. Phys. 123, 184701 (2005).

    Article  ADS  Google Scholar 

  14. X. W. Zhou, R. A. Johnson, and H. N. G. Wadley, Phys. Rev. B 69, 144113 (2004).

    Article  ADS  Google Scholar 

  15. B. H. Morrow and A. Striolo, Mol. Simul. 35, 795 (2009).

    Article  Google Scholar 

  16. Subramanian, K. R. S. Sankaranarayanan, V. R. Bhethanabotla, and B. Joseph, Phys. Rev. B 72, 195405 (2005).

    Article  ADS  Google Scholar 

  17. J. Tersoff, Phys. Rev. B 38, 9902 (1988).

    Article  ADS  Google Scholar 

  18. S. H. Lee, S. S. Han, J. K. Kang, J. H. Ryu, and H. M. Lee, Surf. Sci. 602, 1433 (2008).

    Article  ADS  Google Scholar 

  19. J. D. Honeycutt and H. C. Anderson, J. Chem. Phys. 91, 4950 (1987).

    Article  Google Scholar 

  20. V. S. Baidyshev, Yu. Ya. Gafner, V. M. Samsonov, and A. G. Bembel, Crystallogr. Rep. 60, 95 (2015).

    Article  ADS  Google Scholar 

  21. R. Kelsall, I. Hamley, and M. Geoghegan, Nanoscale Science and Technology (Wiley, Chichester, 2005).

    Book  Google Scholar 

  22. V. M. Samsonov, S. A. Vasilyev, I. V. Talyzin, and Yu. A. Ryzhkov, JETP Lett. 103, 94 (2016).

    Article  ADS  Google Scholar 

  23. D. Schebarchov, S. C. Hendy, and W. Polak, J. Phys.: Condens. Matter. 21, 144204 (2009).

    ADS  Google Scholar 

  24. K. K. Nanda, Pramana—J. Phys. 72, 617 (2009).

    Article  ADS  Google Scholar 

  25. L. V. Redel’, S. L. Gafner, Yu. Ya. Gafner, I. S. Zamulin, and Zh. V. Goloven’ko, Phys. Solid State 59, 413 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Gafner.

Additional information

Original Russian Text © V.S. Baidyshev, Yu.Ya. Gafner, S.L. Gafner, L.V. Redel, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 12, pp. 2483–2489.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baidyshev, V.S., Gafner, Y.Y., Gafner, S.L. et al. Thermal stability of Pt nanoclusters interacting to carbon sublattice. Phys. Solid State 59, 2512–2518 (2017). https://doi.org/10.1134/S1063783417120071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417120071

Navigation