Skip to main content
Log in

On the electrical and optical properties of oxide nanolayers produced by the thermal oxidation of metal tin

  • Surfaces, Interfaces, and Thin Films
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Thin SnO2–x layers, 30 nm in thickness, are produced by the thermal oxidation of metal tin nanolayers at a temperature of 450–750°C. The electrical and optical properties of the layers are studied. During the thermal oxidation of tin nanolayers, an unsteady variation in their conductivity is observed. For the oxide films produced at 450 and 550°C, an absorption band at 340 nm (3.65 eV) is detected in the optical spectra. The conductivity-activation energy is determined for samples oxidized to different degrees. On the basis of experimental data and the data reported in publications, an oxidation mechanism controlling the properties of Sn nanolayers is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Batzill and U. Diebold, Progr. Surf. Sci. 79, 47 (2005).

    Article  ADS  Google Scholar 

  2. Yu. A. Yurakov, S. V. Ryabtsev, O. A. Chuvenkova, S. Yu. Turishchev, E. P. Domashevskaya, S. B. Kushchev, and S. V. Kannykin, Kristallografiya 57, 934 (2012).

    Google Scholar 

  3. Y. A. Yurakov, S. V. Ryabtsev, O. A. Chuvenkova, E. P. Domashevskaya, A. S. Nikitenko, S. V. Kannykin, and S. B. Kushchev, Crystallogr. Rep. 54, 110 (2009).

    Article  ADS  Google Scholar 

  4. N. Cabrera and N. F. Mott, Rep. Progr. Phys. 12, 163 (1948).

    Article  ADS  Google Scholar 

  5. C. Wagner, Science 13, 23 (1973).

    Google Scholar 

  6. Metal Oxide Nanomaterials for Chemical Sensors, Ed. by M. A. Carpenter, S. Mathur, and A. Kolmakov (Springer, New York, 2013).

    Google Scholar 

  7. S. Samson and C. G. Fonstad, J. Appl. Phys. 44, 4618 (1973).

    Article  ADS  Google Scholar 

  8. C. G. Fonstad and R. H. Rediker, J. Appl. Phys. 42, 2911 (1971).

    Article  ADS  Google Scholar 

  9. C. Kilic and A. Zunger, Phys. Rev. Lett. 88, 095501 (2002).

    Article  ADS  Google Scholar 

  10. Y. S. He, J. C. Campbell, R. C. Murphey, N. F. Arendt, and J. S. Swinnea, J. Mater. Res. 8, 3131 (1993).

    Article  ADS  Google Scholar 

  11. K. P. Bogdanov, D. P. Dmitrov, O. F. Lutskaya, and Yu. M. Tairov, Semiconductors 32, 1033 (1998).

    Article  ADS  Google Scholar 

  12. D. A. Popescu, J.-M. Herrmann, A. Ensuquea, and F. Bozon-Verduraz, Phys. Chem. Chem. Phys. 3, 2522 (2001).

    Article  Google Scholar 

  13. X. Wu, B. Zou, J. Xu, B. Yu, G. Tang, G. Zhang, and W. Chen, Nanostruct. Mater. 8, 179 (1997).

    Article  Google Scholar 

  14. Y. Mizokawa and S. Nakamura, Jpn. J. Appl. Phys. 14, 779 (1975).

    Article  ADS  Google Scholar 

  15. E. P. Domashevskaya, S. V. Ryabtsev, E. A. Tutov, Yu. A. Yurakov, O. A. Chuvenkova, and A. N. Lukin, Tech. Phys. Lett. 32, 782 (2006).

    Article  ADS  Google Scholar 

  16. M. C. Wu, C. M. Truong, and D. W. Goodman, Phys. Rev. B 46, 12688 (1992).

    Article  ADS  Google Scholar 

  17. V. I. Avdeev and G. M. Zhidomirov, Zh. Strukt. Khim. 44, 995 (2003).

    Google Scholar 

  18. V. A. Shvets, A. V. Kuznetsov, V. A. Fenin, and V. B. Kazansky, J. Chem. Soc. Faraday Trans. 81, 2913 (1985).

    Article  Google Scholar 

  19. A. Kolmakov, Y. Zhang, and M. Moskovits, Nano Lett. 3, 1125 (2003).

    Article  ADS  Google Scholar 

  20. T. Kobayashi, Y. Kimura, H. Suzuki, T. Sato, T. Tanigaki, Y. Saitob, and C. Kaito, J. Cryst. Growth 243, 143 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Ryabtsev.

Additional information

Original Russian Text © S.V. Ryabtsev, O.A. Chuvenkova, S.V. Kannykin, A.E. Popov, N.S. Ryabtseva, S.S. Voischev, S.Yu. Turishchev, E.P. Domashevskaya, 2016, published in Fizika i Tekhnika Poluprovodnikov, 2016, Vol. 50, No. 2, pp. 180–184.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryabtsev, S.V., Chuvenkova, O.A., Kannykin, S.V. et al. On the electrical and optical properties of oxide nanolayers produced by the thermal oxidation of metal tin. Semiconductors 50, 180–184 (2016). https://doi.org/10.1134/S1063782616020214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782616020214

Keywords

Navigation