Skip to main content
Log in

Simulation of an Ohmic Regime in the T-15MD Tokamak Based on the Canonical Profile Transport Model

  • TOKAMAKS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The canonical profiles transport model (CPTM), whose coefficients were determined from the T‑10 tokamak database with a standard magnetic field BT = 2.3–2.5 T, has shown its robustness in ohmic regimes with a reduced magnetic field BT = 1.55–2.1 T. We used the CPTM for predictions of radial profiles and dependences of the electron and ion temperatures and the energy confinement time on the average plasma density for the T-15MD tokamak at the initial stage of its operation: the ohmic regime in a circular limiter configuration with BT = 1.0 – 2.0 T and plasma current Ip < 1 MA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. A. V. Dnestrovskij, A. Yu. Danilov, S. E. Dnestrovskij, A. V. Lysenko, and S. V. Sushkov, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint. 36 (4), 45 (2013).

    Google Scholar 

  2. Yu. N. Dnestrovskij, V. A. Vershkov, A. V. Danilov, A. Yu. Dnestrovskij, S. E. Lysenko, A. V. Melnikov, G. F. Subbotin, D. Yu. Sychugov, S. V. Cherkasov, and D. A. Shelukhin, Plasma Phys. Rep. 45, 207 (2019). https://doi.org/10.1134/S1063780X19020053

    Article  ADS  Google Scholar 

  3. A. V. Dnestrovskij, A. Yu. Danilov, S. E. Dnestrovskij, A. V. Lysenko, A. R. Melnikov, M. R. Nemets, G. F. Nurgaliev, N. A. Subbotin, D. Yu. Soloviev, and S. V. Sychugov, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint. 45 (1), 9 (2022). https://doi.org/10.21517/0202-3822-2022-45-1-9-28

    Article  Google Scholar 

  4. Yu. N. Dnestrovskij, A. V. Danilov, A. Yu. Dnestrovskij, S. E. Lysenko, A. V. Melnikov, A. R. Nemets, M. R. Nurgaliev, G. F. Subbotin, N. A. Solovev, D. Yu. Sychugov, and S. V. Cherkasov, Plasma Phys. Controlled Fusion 63, 055012 (2021). https://doi.org/10.1088/1361-6587/abdc9b

    Article  ADS  Google Scholar 

  5. V. M. Leonov, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint. 39 (3), 73 (2016). https://doi.org/10.21517/0202-3822-2016-39-3-73-79

    Article  Google Scholar 

  6. A. V. Melnikov, L. G. Eliseev, S. E. Lysenko, S. V. Perfilov, R. V. Shurygin, L. I. Krupnik, A. S. Kozachek, and A. I. Smolyakov, JETP Lett. 100, 555 (2014).

    Article  ADS  Google Scholar 

  7. A. V. Melnikov, L. G. Eliseev, S. V. Perfiolov, V. F. Andreev, S. A. Grashin, K. S. Dyabilin, A. N. Chudnovskiy, M. Yu. Isaev, S. E. Lsenko, V. A. Mavrin, M. I. Mikhailov, D. V. Ryzhakov, R. V. Shurygin, V. N. Zenin, and the T-10 Team, Nucl. Fusion 53, 093019 (2013). https://doi.org/10.1088/0029-5515/53/9/093019

    Article  ADS  Google Scholar 

  8. A. V. Melnikov, C. Hidalgo, L. G. Eliseev, E. Ascasibar, A. A. Chmyga, K. S. Dyabilin, I. A. Krasilnikov, V. A. Krupin, L. I. Krupnik, S. M. Khrebtov, A. D. Komarov, A. S. Kozachek, D. Lopez-Bruna, S. E. Lysenko, V. A. Mavrin, et al., Nucl. Fusion 51, 083043 (2011). https://doi.org/10.1088/0029-5515/51/8/083043

    Article  ADS  Google Scholar 

  9. Yu. N. Dnestrovskij, J. W. Connor, S. V. Cherkasov, A. V. Danilov, A. Yu. Dnestrovskij, S. E. Lysenko, C. M. Roach, and M. Walsh, Plasma Phys. Controlled Fusion 49, 1477 (2007). https://doi.org/10.1088/0741-3335/49/9/009

    Article  ADS  Google Scholar 

  10. G. V. Pereverzev and P. N. Yushmanov, Preprint IPP 5/98 (Max-Planck-Institut für Plasmaphysik, Garching, 2002).

    Google Scholar 

  11. K. A. Razumova, V. F. Andreev, A. Ya. Kislov, N. A. Kirneva, S. E. Lysenko, Yu. D. Pavlov, T. V. Shafranov, the T-10 Team, A. J. H. Donné, G. M. D. Hogeweij, G. W. Spakman, R. Jaspers, the TEXTOR team, M. Kantor, and M. Walsh, Nucl. Fusion 49, 065011 (2009). https://doi.org/10.1088/0029-5515/49/6/065011

    Article  ADS  Google Scholar 

  12. A. V. Melnikov, A. V. Sushkov, A. M. Belov, Yu. N. Dnestrovskij, L. G. Eliseev, A. V. Gorshkov, D. P. Ivanov, N. A. Kirneva, K. V. Korobov, V. A. Krupin, S. E. Lysenko, V. S. Mukhovatov, N. A. Mustafin, S. V. Perfilov, K. A. Razumova, et al., Fusion Eng. Des. 96–97, 306 (2015). https://doi.org/10.1016/j.fusengdes.2015.06.080

    Article  Google Scholar 

  13. ITER Physics Expert Group on Confinement and Transport, ITER Physics Expert Group on Confinement Modelling and Database, and ITER Physics Basis Editors, Nucl. Fusion 39, 2175 (1999).

    Article  Google Scholar 

  14. J. E. Rice, J. Citrin, N. M. Cao, P. H. Diamond, M. Greenwald, and B. A. Crierson, Nucl. Fusion 60, 105001 (2020). https://doi.org/10.1088/1741-4326/abac4b

    Article  Google Scholar 

Download references

Funding

The work was supported by the State Assignment for the National Research Centre “Kurchatov Institute”. T-10 simulations are supported by the Russian Science Foundation, grant 23-72-00042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Kasyanova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasyanova, N.V., Dnestrovskij, Y.N. & Melnikov, A.V. Simulation of an Ohmic Regime in the T-15MD Tokamak Based on the Canonical Profile Transport Model. Plasma Phys. Rep. 50, 322–330 (2024). https://doi.org/10.1134/S1063780X24600208

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X24600208

Keywords:

Navigation