Skip to main content
Log in

Numerical Simulation of the Main Stage of a Lightning

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

We present a numerical model of the main stage of a lightning discharge. Within the framework of the developed model, evolution of parameters of the current channel upon the return stroke (the lightning main stage) is described by the system of equations governing conservation of mass, momentum, total energy, along with the transmission-line equations for determining the electric potential and the total current in each channel cross section. The main characteristics of lightning at the stage of the return stroke detectable experimentally, such as gas heating in the channel to temperatures in the range of 10–40 kK, the fundamental possibility of propagation of the potential-gradient wave at a speed varying from several hundredth to several tenths of the speed of light, and the possibility of the return-stroke wave propagating a relatively long distance without substantial attenuation, are demonstrated numerically. The conclusion that the developed physical and numerical model of the lightning discharge describes physical processes that occur under real conditions qualitatively correctly can be drawn based on the results on simulation of lightning discharges of various intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. E. M. Bazelyan and Yu. P. Raizer, Lightning Physics and Lightning Protection (Nauka, Moscow, 2001; IOP, Bristol, 2000).

  2. V. A. Rakov and M. A. Uman, Lightning: Physics and Effects (Cambridge Univ. Press, Cambridge, 2003).

    Book  Google Scholar 

  3. A. H. Paxton, R. L. Gardner, and L. Baker, Phys. Fluids 29, 2736 (1986).

    Article  ADS  Google Scholar 

  4. N. L. Aleksandrov, E. M. Bazelyan, and M. N. Shneider, Plasma Phys. Rep. 26, 893 (2000).

    Article  ADS  Google Scholar 

  5. M. N. Plooster, Phys. Fluids 14, 2111 (1971).

    Article  ADS  Google Scholar 

  6. J.-F. Ripoll, J. Zinn, C. A. Jeffery, and P. L. Colestock, J. Geophys. Res.: Atmos. 119, 9196 (2014).

    Article  ADS  Google Scholar 

  7. J.-F. Ripoll, J. Zinn, P. L. Colestock, and C. A. Jeffery, J. Geophys. Res.: Atmos. 119, 9218 (2014).

    Article  ADS  Google Scholar 

  8. A. N. Bocharov, E. A. Mareev, and N. A. Popov, J. Phys. D: Appl. Phys. 55, 115204 (2022).

    Article  ADS  Google Scholar 

  9. A. Robledo-Martinez, H. Sobral, and A. Ruiz-Meza, J. Phys. D: Appl. Phys. 41, 175207 (2008).

    Article  ADS  Google Scholar 

  10. R. Sousa Martins, L. Chemartin, C. Zaepffel, Ph. Lalande, and A. Soufiani, J. Phys. D: Appl. Phys. 49, 185204 (2016).

    Article  ADS  Google Scholar 

  11. R. Sousa Martins, C. Zaepffel, L. Chemartin, Ph. Lalande, and A. Soufiani, J. Phys. D: Appl. Phys: 49, 415205 (2016).

    Article  Google Scholar 

  12. R. Sousa Martins, C. Zaepffel, L. Chemartin, Ph. Lalande, and F. Lago, J. Phys. D: Appl. Phys. 52, 185203 (2019).

    Article  ADS  Google Scholar 

  13. L. M. Vasilyak, S. V. Kostyuchenko, N. N. Kudryavtsev, and I. V. Filyugin, Phys.—Usp. 37, 247 (1994).

    Article  Google Scholar 

  14. N. A. Popov, Plasma Phys. Rep. 29, 695 (2003).

    Article  ADS  Google Scholar 

  15. N. L. Aleksandrov, E. M. Bazelyan, and A. M. Konchakov, Plasma Phys. Rep. 27, 875 (2001).

    Article  ADS  Google Scholar 

  16. V. A. Bityurin, A. N. Bocharov, and N. A. Popov, Fluid Dyn. 43, 642 (2008).

  17. V. A. Bityurin and A. N. Bocharov, J. Phys. D: Appl. Phys. 51, 264001 (2018). https://doi.org/10.1088/1361-6463/aac566

    Article  ADS  Google Scholar 

  18. V. A. Bityurin, A. N. Bocharov, and N. A. Popov, J. Phys. D: Appl. Phys. 52, 354001 (2019). https://doi.org/10.1088/1361-6463/ab2181

    Article  Google Scholar 

  19. A. D’Angola, G. Colonna, C. Gorse, and M. Capitelli, Eur. Phys. J. D 46, 129 (2008). https://doi.org/10.1140/epjd/e2007-00305-4

    Article  ADS  Google Scholar 

  20. I. V. Avilova, L. M. Biberman, V. S. Vorob’ev, V. M Zamalin, G. A. Kobzev, A. N. Lagar’kov, A. Kh. Mnatsakanyan, and G. E. Norman, Optical Properties of Hot Air, Ed. by L. M. Biberman (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  21. G. A. Kobzev and V. A. Nuzhnyi, IVTAN Rev. 3, 57 (1989).

    Google Scholar 

  22. A. N. Bocharov, E. A. Mareev, and N. A. Popov, J. Phys.: Conf. Ser. 2100, 012031 (2021). https://doi.org/10.1088/1742-6596/2100/1/012031

    Article  Google Scholar 

  23. E. M. Bazelyan and M. I. Chichinskiy, Plasma Phys. Rep. 35, 794 (2009).

    Article  ADS  Google Scholar 

  24. N. A. Bogatov, V. S. Syssoev, D. I. Sukharevsky, A. I. Orlov, V. A. Rakov, and E. A. Mareev, J. Geophys. Res.: Atmos. 127, e2021JD035870 (2022).

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 23-17-00264.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Bocharov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bocharov, A.N., Mareev, E.A. & Popov, N.A. Numerical Simulation of the Main Stage of a Lightning. Plasma Phys. Rep. 50, 380–387 (2024). https://doi.org/10.1134/S1063780X24600117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X24600117

Keywords:

Navigation