Skip to main content
Log in

About the Current Flow in a Discharge Tube with a Metal Section. Analysis of the Thermal Balance

  • PLASMA–SURFACE INTERACTIONS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The work describes the possibility of using a conducting fluid model (single-fluid model) to analyze physical phenomena observed in the inhomogeneous gas discharge plasma. A technique for calculation of the heat fluxes and temperature fields in a discharge in a cylindrical glass tube with metal sections is proposed. The presence of metal sections leads to a change in the thermal balance in the plasma volume. Specific calculations have been carried out for conditions with significantly different thermal conductivity coefficients of gases (argon and helium) and metals (steel and copper). Two cases of the discharge state—diffuse and constricted—are considered. Spatial distributions of heat sources, temperature fields and heat fluxes depending on the gas type, and discharge tube configuration are presented. The considered discharge configuration and the proposed calculation method can be useful for practical applications, for example, in laser physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. O. Svelto, Principles of Lasers, 4th ed., Ed. by D. C. Hanna (Springer, New York, 1998). https://doi.org/10.1007/978-1-4419-1302-9.

  2. J. Prathap Kumar, J. Umavathi, and B. M. Biradar, Int. J. Non-Linear Mech. 46, 278 (2011). https://doi.org/10.1016/j.ijnonlinmec.2010.09.008

    Article  ADS  Google Scholar 

  3. M. D. Kartalev, Geophys. Astrophys. Fluid Dyn. 88, 131 (1998). https://doi.org/10.1080/03091929808245471

    Article  ADS  MathSciNet  Google Scholar 

  4. H.-b. Cai, X.-x. Yan, P.-l. Yao, and S.-p. Zhu, Matter Radiat. Extremes 6, 035901 (2021). https://doi.org/10.1063/5.0042973

    Article  Google Scholar 

  5. A. V. Siasko, Yu. B. Golubovskii, and M. V. Balabas, Phys. Scr. 98, 015607 (2022). https://doi.org/10.1088/1402-4896/aca62f

    Article  ADS  Google Scholar 

  6. B. E. Cherrington, Gaseous Electronics and Gas Lasers (Elsevier, New York, 1979). https://doi.org/10.1016/C2013-0-10097-9.

  7. M. Endo and R. F. Walter, Gas Lasers (CRC, Boca Raton, 2007). https://doi.org/10.1201/b13628.

  8. E. Kalinin, G. A. Dreitser, I. Kopp, A. Myakochin, and W. Janna, Appl. Mech. Rev. 55, B78 (2002). https://doi.org/10.1115/1.1483365

    Article  Google Scholar 

  9. V. E. Golant, A. P. Zhilinskii, and I. E. Sakharov, Fundamentals of Plasma Physics (Atomizdat, Moscow, 1977; Wiley, New York, 1980).

  10. Tables of Physical Quantities, Ed. by I. K. Kikoin (Atomizdat, Moscow, 1976) [in Russian].

    Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 22-72-10004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Siasko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siasko, A.V., Gurkova, T.V., Balabas, M.V. et al. About the Current Flow in a Discharge Tube with a Metal Section. Analysis of the Thermal Balance. Plasma Phys. Rep. 50, 350–357 (2024). https://doi.org/10.1134/S1063780X23602018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X23602018

Keywords:

Navigation