Skip to main content
Log in

Confinement Performance of the Plasma Equilibrium Configuration of Compact Galatea Magnetic Trap

  • MAGNETIC TRAPS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The basic goal of magnetic confinement is to maintain plasma in an equilibrium state for an extended period using a magnetic field configuration. The plasma equilibrium configuration significantly affects the confinement efficiency and stability of the magnetic confinement device, and we anticipate that the equilibrium discharge of the Trimyx Galatea magnetic trap device will operate in an optimal configuration. The Grad–Shafranov equation, a mathematical model of two-dimensional magneto-fluid static equilibrium of the Trimyx Galatea magnetic trap, was established. Numerical calculations were performed under the conditions of a given magnetic field configuration and plasma pressure distribution and the evolution laws of the distinctive parameters of the equilibrium configuration were determined under different plasma confinement settings. The magnetic specific volume coupling model was further developed to demonstrate the mechanism of the influence of the magnetic trap magnetic field on the plasma confinement efficiency and properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. A. I. Morozov and V. V. Savel’ev, Phys.—Usp. 41, 1049 (1998).

    Article  Google Scholar 

  2. J. C. Riordan, A. J. Lichtenberg, and M. A. Lieberman, Nucl. Fusion 19, 21 (1979).

    Article  ADS  Google Scholar 

  3. J. Li and Y. Wan, Engineering 7, 1523 (2021).

    Article  Google Scholar 

  4. A. I. Morozov, A. I. Bugrova, A. M. Bishaev, A. S. Lipatov, and M. V. Kozintseva, Tech. Phys. 52, 1546 (2007).

    Article  Google Scholar 

  5. K. V. Brushlinskii and N. A. Chmykhova, Math. Models Comput. Simul. 3, 9 (2011).

    Article  MathSciNet  Google Scholar 

  6. B. Tao, W. Tong, X. Jin, and Z. Li, IEEE Trans. Plasma Sci. 44, 1779 (2016).

    Article  ADS  Google Scholar 

  7. K. V. Brushlinskii and E. V. Stepin, J. Phys.: Conf. Ser. 1686, 012030 (2020).

    Google Scholar 

  8. K. V. Brushlinskii and P. A. Ignatov, Comput. Math. Math. Phys. 50, 2071 (2010).

    Article  MathSciNet  Google Scholar 

  9. K. V. Brushlinskii and A. S. Goldich, Plasma Phys. Rep. 40, 591 (2014).

    Article  ADS  Google Scholar 

  10. W. Tong, B. Tao, X. Jin, and Z. Li, IEEE Trans. Plasma Sci. 44, 1018 (2016).

    Article  ADS  Google Scholar 

  11. A. I. Morozov, A. I. Bugrova, A. M. Bishaev, M. V. Ko-zintseva, A. S. Lipatov, V. I. Vasil’ev, and V. M. Strunnikov, Plasma Phys. Rep. 32, 171 (2006).

    Article  ADS  Google Scholar 

  12. K. V. Brushlinskii, A. S. Gol’dich, and A. S. Desyatova, Math. Models Comput. Simul. 5, 156 (2013).

    Article  MathSciNet  Google Scholar 

  13. E. E. Ortiz, A. C. Boxer, J. L. Ellsworth, D. T. Garnier, A. Hansen, I. Karim, J. Kesner, and M. E. Manuel, J. Fusion Energy 26, 139 (2007).

    Article  ADS  Google Scholar 

  14. W. M. Tong, B. Q. Tao, X. J. Jin, and Z. W. Li, Plasma Phys. Rep. 42, 919 (2016).

    Article  ADS  Google Scholar 

  15. K. V. Brushlinskii and E. V. J. Stepin, J. Phys.: Conf. Ser. 2028, 012026 (2021).

    Google Scholar 

  16. A. I. Morozov, A. I. Bugrova, A. M. Bishaev, M. V. Ko-zintseva, and A. S. Lipatov, Tech. Phys. Lett. 32, 33 (2006).

    Article  ADS  Google Scholar 

  17. A. M. Bishaev, A. I. Bugrova, M. B. Gavrikov, M. V. Ko-zintseva, A. S. Lipatov, V. V. Savel’ev, A. S. Sigov, P. G. Smirnov, I. A. Tarelkin, and P. P. Khramtsov, Tech. Phys. 58, 498 (2013).

    Article  Google Scholar 

  18. D. Van Eester, E. Lerche, P. Huynh, T. Johnson, D. Yadikin, Ž. Štancar, S. Aleiferis, D. Frigione, L. Garzotti, P. Lomas, C. Lowry, M. Maslov, JET contributors, and EUROfusion-IM team, Plasma Phys. Controlled Fusion 64, 055014 (2022).

    Article  ADS  Google Scholar 

  19. K. Miyamoto, Plasma Physics and Controlled Nuclear Fusion (MIT Press, Cambridge, MA, 1979), p. 32.

    Google Scholar 

  20. J. Egedal, H. J. Monkhorst, E. Lichko, and P. Montag, Phys. Plasmas 25, 072510 (2018).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank G.E. Bugrov from the Plasma Physics and Technology Laboratory of the National Radio, Electronics and Automation University in Moscow (MIREA). The authors would also like to thank for the research funding of the Hubei Superior and Distinctive Discipline Group of “New Energy Vehicles and Smart Transportation” for this project.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Q. Tao.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, B.Q., Liu, J., Liang, P. et al. Confinement Performance of the Plasma Equilibrium Configuration of Compact Galatea Magnetic Trap. Plasma Phys. Rep. 50, 12–22 (2024). https://doi.org/10.1134/S1063780X23601116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X23601116

Keywords:

Navigation