Skip to main content
Log in

Arbitrary Amplitude Dust Kinetic Alfvén Solitary Waves (DKASW) in a Three-Component Magnetized Plasma with Non-Thermal Electrons and Ions

  • DUSTY PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The existence of arbitrary amplitude dust kinetic Alfvén wave has been studied in a three-component plasma with magnetized cold dust and non-thermally distributed ions and electrons. In order to study the non-linear behavior of dust kinetic Alfvén waves, the Sagdeev potential method is used. The existence domain of the solitary wave has been established. It is observed that only rarefactive sub-Alfvénic DKAW are generated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. Hasegawa and K. Mima, Phys. Rev. Lett. 37, 690 (1976).

    Article  ADS  Google Scholar 

  2. R. Roychoudhury and S. Maitra, Phys. Plasmas 9, 4160 (2002).

    Article  ADS  Google Scholar 

  3. A. Hasegawa and K. Mima, J. Geophys. Res. 83, 1117 (1978).

    Article  ADS  Google Scholar 

  4. M. Y. Yu and P. K. Shukla, Phys. Fluids 21, 1457 (1978).

    Article  ADS  Google Scholar 

  5. M. K. Kalita and B. C. Kalita, J. Plasma Phys. 35, 267 (1986).

    Article  ADS  Google Scholar 

  6. D.-J. Wu, G.-L. Huang, D.-Y. Wang, and C.-G. Fält-hammar, Phys. Plasmas 3, 2879 (1996).

    Article  ADS  Google Scholar 

  7. N. Devi, R. Gogoi, G. C. Das, and R. Roychoudhury, Phys. Plasmas 14, 012107 (2007).

    Article  ADS  Google Scholar 

  8. M. H. Woo, C.-M. Ryu, and C. R. Choi, Phys. Plasmas 19, 072117 (2012).

    Article  ADS  Google Scholar 

  9. P. K. Shukla, H. U. Rahman, and R. P. Sarma, J. Plasma Phys. 28, 125 (1982).

    Article  ADS  Google Scholar 

  10. C. K. Goertz, Rev. Geophys. 27, 271 (1989).

    Article  ADS  Google Scholar 

  11. R. M. Crutcher, Annu. Rev. Astron. Astrophys. 50, 29 (2012).

    Article  ADS  Google Scholar 

  12. S. Reissl, A. M. Stutz, R. S. Klessen, D. Seifried, and S. Walch, Mon. Not. R. Astron. Soc. 500, 153 (2020).

    Article  ADS  Google Scholar 

  13. M. Wardle, Astrophys. Space Sci. 311, 35 (2007).

    Article  ADS  Google Scholar 

  14. A. A. Mamun and P. K. Shukla, Phys. Plasmas 10, 4341 (2003).

    Article  ADS  Google Scholar 

  15. B. Tadsen, F. Greiner, and A. Piel, Phys. Plasmas 21, 103704 (2014).

    Article  ADS  Google Scholar 

  16. M. Choudhary, R. Bergert, S. Mitic, and M. H. Tho-ma, Contrib. Plasma Phys. 60, e201900115 (2020).

    Article  ADS  Google Scholar 

  17. M. Rosenberg, Phys. Scr. 82, 035505 (2010).

    Article  ADS  Google Scholar 

  18. P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (IOP, London, 2002).

    Book  Google Scholar 

  19. M. Salimullah and M. Rosenberg, Phys. Lett. A 254, 347 (1999).

    Article  ADS  Google Scholar 

  20. C. Yinhua, L. Wei, and M. Y. Yu, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 61, 809 (2000).

    Google Scholar 

  21. M. A. Mahmood, A. M. Mirza, P. H. Sakanaka, and G. Murtaza, Phys. Plasmas 9, 3794 (2002).

    Article  ADS  Google Scholar 

  22. X. Jukui, Phys. Scr. 68, 394 (2003).

    Article  ADS  Google Scholar 

  23. A. M. Mirza, M. A. Mahmood, and G. Murtaza, New J. Phys. 5, 116 (2003).

    Article  ADS  Google Scholar 

  24. R. Gogoi and N. Devi, Phys. Plasmas 15, 074504 (2008).

    Article  ADS  Google Scholar 

  25. N. S. Saini, B. Kaur, M. Singh, and A. S. Bains, Phys. Plasmas 24, 073701 (2017).

    Article  ADS  Google Scholar 

  26. M. Singh, N. Kaur, and N. S. Saini, Phys. Plasmas 25, 023705 (2018).

    Article  ADS  Google Scholar 

  27. M. Singh, K. Singh, and N. S. Saini, Pramana 95, 197 (2021).

    Article  ADS  Google Scholar 

  28. J. R. Asbridge, S. J. Bame, and I. B. Strong, J. Geophys. Res. 73, 5777 (1968).

    Article  ADS  Google Scholar 

  29. E. C. Shoub, Astrophys. J. 266, 339 (1983).

    Article  ADS  Google Scholar 

  30. R. A. Cairns, A. A. Mamun, R. Bingham, R. Boström, R. O. Dendy, C. M. C. Nairn, and P. K. Shukla, Geophys. Res. Lett. 22, 2709 (1995).

    Article  ADS  Google Scholar 

  31. S. I. Kopnin, D. V. Shokhrin, and S. I. Popel, Plasma Phys. Rep. 48, 141 (2022).

    Article  ADS  Google Scholar 

  32. S. I. Kopnin, D. V. Shokhrin, and S. I. Popel, Plasma Phys. Rep. 49, 741 (2023).

    Article  ADS  Google Scholar 

  33. I. Beilis, Laser Part. Beams 30, 341 (2012).

    Article  ADS  Google Scholar 

  34. D. Bennaceur-Doumaz and M. Djebli, Phys. Plasmas 17, 074501 (2010).

    Article  ADS  Google Scholar 

  35. A. A. Mamun, R. A. Cairns, and P. K. Shukla, Phys. Plasmas 3, 2610 (1996).

    Article  ADS  Google Scholar 

  36. R. Roychoudhury, J. Plasma Phys. 67, 199 (2002).

    Article  ADS  Google Scholar 

  37. S. Ghosh, R. Bharuthram, M. Khan, and M. R. Gupta, Phys. Plasmas 11, 3602 (2004).

    Article  ADS  Google Scholar 

  38. H. Asgari, S. V. Muniandy, and C. S. Wong, Phys. Plasmas 20, 023705 (2013).

    Article  ADS  Google Scholar 

  39. M. Emamuddin and A. A. Mamun, Phys. Plasmas 25, 013708 (2018).

    Article  ADS  Google Scholar 

  40. B. B. Kadomtsev, Plasma Turbulence (Academic, London, 1965), p. 82.

    Google Scholar 

  41. E. C. Whipple, Rep. Prog. Phys. 44, 1198 (1981).

    Article  ADS  Google Scholar 

  42. J. E. Allen, Phys. Scr. 45, 497 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  43. S. I. Popel, S. I. Kopnin, I. N. Kosarev, and M. Y. Yu, Adv. Space Res. 37, 414 (2006).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author like to express her gratitude to the referees for their valuable comments and criticism. The author also thanks the editor and his stuff for their cooperation.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Choudhury.

Ethics declarations

As author of this work, I declare that I have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhury, M. Arbitrary Amplitude Dust Kinetic Alfvén Solitary Waves (DKASW) in a Three-Component Magnetized Plasma with Non-Thermal Electrons and Ions. Plasma Phys. Rep. 50, 65–76 (2024). https://doi.org/10.1134/S1063780X23600913

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X23600913

Keywords:

Navigation