Skip to main content
Log in

Time-Resolved Optical Diagnostics of the Microwave Discharge in Liquid Hydrocarbons with Argon Bubbling

  • PLASMA DIAGNOSTICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract—

The methods of emission spectroscopy, shadow photography, and integral radiation of a discharge with time resolution are used to study the initial stages of the development of a microwave discharge in liquid hydrocarbons when argon is supplied to the discharge region. As a representative of a wide range of hydrocarbons, the petroleum solvent Nefras C2 80/120 is used. With the help of shadow photographs, the change in the structure of the discharge with time was studied, and the sizes and growth rates of the gas bubble with plasma are determined. The emission spectra of the discharge, obtained at an exposure time of 1 ms, shows that, in addition to the usual Swan and CH bands, the spectrum contains atomic emission lines of Hα and of a carbon ion. The presence of these lines is associated with the big role of electron impact in the kinetics of processes in plasma at short times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. P. J. Bruggeman and C. Leys, J. Phys. D: Appl. Phys. 42, 053001 (2009).

  2. S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J. C. Whitehead, A. B. Murphy, A. F. Gutsol, S. Starikovskaia, U. Kortshagen, J.-P. Boeuf, T. J. Sommerer, M. J. Kushner, U. Czarnetzki, et al., J. Phys. D: Appl. Phys. 45, 253001 (2012).

  3. P. J. Bruggeman, M. J. Kushner, B. R. Locke, J. G. E. Gardeniers, W. G. Graham, D. B. Graves, R. C. H. M. Hofman-Caris, D. Maric, J. P. Reid, E. Ceriani, D. F. Rivas, J. E. Foster, S. C. Garrick, Y. Gorbanev, S. Hamaguchi, et al., Plasma Sources Sci. Technol. 25, 053002 (2016).

  4. I. Adamovich, S. D. Baalrud, A. Bogaerts, P. J. Bruggeman, M. Cappelli, V. Colombo, U. Czarnetzki, U. Ebert, J. G. Eden, P. Favia, D. B. Graves, S. Hamaguchi, G. Hieftje, M. Hori, I. D. Kaganovich, et al., J. Phys. D: Appl. Phys. 50, 323001 (2017).

  5. M. A. Malik, A. Ghaffar, and S. A. Malik, Plasma Sources Sci. Technol. 10, 82 (2001).

    Article  ADS  Google Scholar 

  6. J. Foster, Phys. Plasmas 24, 055501 (2017).

  7. F. Rezaei, P. Vanraes, A. Nikiforov, R. Morent, and N. De Geyter, Materials 12, 2751 (2019).

    Article  ADS  Google Scholar 

  8. B. R. Locke, Int. J. Plasma Environ. Sci. Technol. 6, 194 (2012).

    Google Scholar 

  9. V. V. Rybkin and D. A. Shutov, Plasma Phys. Reports 43, 1089 (2017).

    Article  ADS  Google Scholar 

  10. P. Vanraes and A. Bogaerts, Appl. Phys. Rev. 5, 031103 (2018).

  11. Yu. A. Lebedev, Plasma Phys. Rep. 43, 685 (2017).

    Article  ADS  Google Scholar 

  12. S. Horikoshi and N. Serpone, RSC Adv. 7, 47196 (2017).

    Article  ADS  Google Scholar 

  13. Yu. A. Lebedev, High Temp. 56, 811 (2018).

    Article  Google Scholar 

  14. Yu. A. Lebedev, Polymers 13, 1678 (2021).

    Article  Google Scholar 

  15. Yu. A. Lebedev, G. V. Krashevskaya, T. S. Batukaev, and I. L. Epstein, Plasma Processes Polym. 18, 2100051 (2021).

  16. K. A. Averin, I. V. Bilera, Yu. A. Lebedev, V. A. Shakhatov, and I. L. Epstein, Plasma Processes Polym. 16, 1800198 (2019).

  17. K. A. Averin, Yu. A. Lebedev, and A. V. Tatarinov, High Energy Chem. 53, 331 (2019).

    Article  Google Scholar 

  18. Yu. A. Lebedev and V. A. Shakhatov, Plasma Processes Polym. 17, 2000003 (2020).

  19. Yu. A. Lebedev, A. V. Tatarinov, I. L. Epstein, and K. A. Averin, Plasma Chem. Plasma Process. 36, 535 (2016).

    Article  Google Scholar 

Download references

Funding

The work was carried out within the State Program of the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Lebedev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batukaev, T.S., Krashevskaya, G.V., Lebedev, Y.A. et al. Time-Resolved Optical Diagnostics of the Microwave Discharge in Liquid Hydrocarbons with Argon Bubbling. Plasma Phys. Rep. 48, 391–394 (2022). https://doi.org/10.1134/S1063780X22040043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22040043

Keywords:

Navigation