Skip to main content
Log in

MHD Simulations of Turbulent Development of the Z-pinch Sausage Instability

  • PLASMA DYNAMICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Two-dimensional axially symmetric MHD simulations were used to study Z-pinch waisting in the presence of small-scale short-wavelength perturbations, i.e., taking into account two-dimensional turbulence development. Effects of magnetic diffusion and thermal conduction were supposed to be minor and treated as significant only in the regions where they must be incorporated (at plasma/vacuum interfaces and near the axis). We considered the evolution of a cylindrical plasma column with a sinusoidal boundary perturbation and small-scale random density perturbations driven by constant current. The calculations demonstrated that the growing turbulence does not allow narrowing of the waist to an arbitrarily small radius and axial outflow of the plasma from the waist region. The amplitude of initial perturbations has some effect on the maximum compression parameters because, with its increase, waisting develops faster, so the short-wavelength perturbations are able to grow to a smaller extent, and the generated turbulent plasma shields the compression region less effectively. During the compression of the waist there is no generation of high voltages near the axis, which could promote ion beam formation and neutron generation by the beam–target mechanism. The calculations also predict rather fast achievement of MHD stability at the boundary of interchange instability. Since no unlimited compression is possible in the Z-pinch waist, it seems that plasma fusion ignition will hardly be attainable there even at multi-mega-ampère driver currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).

  2. B. A. Trubnikov, Plasma Physics and Problem of Controlled Fusion Reactions (Izd. Akad. Nauk SSSR, Moscow, 1958), Vol. 1, p. 289 [in Russian].

    Google Scholar 

  3. M. Kruskal and M. Schwarzschild, Proc. R. Soc. A 223, 348 (1954).

    ADS  Google Scholar 

  4. V. D. Shafranov, At. Energ., No. 5, 38 (1956).

  5. S. F. Garanin, Physical Processes in the MAGO-MTF Systems (RFYaTs-VNIIEF, Sarov, 2012; LA-UR-13-29094, Los Alamos, 2013).

  6. V. F. D’yachenko and V. S. Imshennik, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1980), Vol. 8, p. 199.

    Google Scholar 

  7. V. V. Vikhrev and S. I. Braginskii, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1986), Vol. 10, p. 425.

    Google Scholar 

  8. B. A. Trubnikov and S. K. Zhdanov, JETP Lett. 41, 358 (1985).

    ADS  Google Scholar 

  9. S. F. Garanin and Yu. D. Chernyshev, Sov. J. Plasma Phys. 13, 562 (1987).

    Google Scholar 

  10. V. V. Yan’kov, Preprint IAE-4218/7 (Kurchatov Institute of Atomic Energy, Moscow, 1985).

    Google Scholar 

  11. V. V. Yan’kov, Sov. J. Plasma Phys. 17, 305 (1991).

    Google Scholar 

  12. D. Klir, J. Kravarik, P. Kubes, K. Rezac, S. S. Anan’ev, Yu. L. Bakshaev, P. I. Blinov, A. S. Chernenko, E. D. Kazakov, V. D. Korolev, B. R. Meshcherov, G. I. Ustroev, L. Juha, J. Krasa, and A. Velyhan, Phys. Plasmas 15, 032701 (2008). https://doi.org/10.1063/1.2839352

  13. D. Klir, A. V. Shishlov, V. A. Kokshenev, P. Kubes, K. Rezac, R. K. Cherdizov, J. Cikhardt, B. Cikhardtova, G. N. Dudkin, F. I. Fursov, T. Hyhlik, J. Kaufman, B. M. Kovalchuk, J. Krasa, J. Kravarik, et al., New J. Phys. 20, 053064 (2018).

  14. D. Klir, S. L. Jackson, A. V. Shishlov, V. A. Kokshenev, K. Rezac, A. R. Beresnyak, R. K. Cherdizov, J. Cikhardt, B. Cikhardtova, G. N. Dudkin, J. T. Engelbrecht, F. I. Fursov, J. Krasa, J. Kravarik, P. Kubes, et al., Matter Radiat. Extremes 5, 026401 (2020). https://doi.org/10.1063/1.5132845

  15. S. V. Lebedev, A. Frank, and D. D. Ryutov, Rev. Mod. Phys. 91, 025002 (2019).

  16. S. F. Garanin and V. I. Mamyshev, Plasma Phys. Rep. 34, 639 (2008).

    Article  ADS  Google Scholar 

  17. S. F. Garanin, V. Yu. Dolinskii, V. I. Mamyshev, N. G. Makeev, and V. V. Maslov, Plasma Phys. Rep. 46, 978 (2020).

    Article  ADS  Google Scholar 

  18. S. F. Garanin and V. I. Mamyshev, Vopr. At. Nauki Tekh., Ser.: Teor. Prikl. Fiz., No. 1, 23 (1989).

  19. P. V. Sasorov, Sov. J. Plasma Phys. 17, 874 (1991).

    Google Scholar 

  20. Yu. L. Bakshaev, A. V. Bartov, P. I. Blinov, A. S. Chernenko, S. A. Dan’ko, Yu. G. Kalinin, A. S. Kingsep, V. D. Korolev, V. I. Mizhiritskii, V. P. Smirnov, A. Yu. Shashkov, P. V. Sasorov, and S. I. Tkachenko, Plasma Phys. Rep. 33, 259 (2007).

    Article  ADS  Google Scholar 

  21. S. I. Braginskii, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p. 205.

    Google Scholar 

  22. C. A. J. Fletcher, Computational Techniques for Fluid Dynamics, Vol. 1: Fundamental and General Techniques (Springer-Verlag, Berlin, 1991).

  23. K. Roberts and D. Potter, in Methods in Computational Physics, Vol. 9: Plasma Physics, Ed. by Ed. by B. Alder, S. Fernbach, and M. Rotenberg (Academic, New York, 1970), p. 340.

  24. C. A. J. Fletcher, Computational Techniques for Fluid Dynamics, Vol. 2: Specific techniques for Different Flow Categories (Springer-Verlag, Berlin, 1991).

  25. V. F. Knoch, in Methods in Computational Physics, Vol. 3: Fundamental Methods in Hydrodynamics, Ed. by B. Alder, S. Fernbach, and M. Rotenberg (Academic, New York, 1964).

  26. A. A. Samarskii and Yu. P. Popov, Difference Methods for Solving Gas-Dynamics Problems (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  27. B. B. Kadomtsev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1966), Vol. 2, p. 153.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank V.V. Yan’kov for his proposal to explore the possibility of ignition using MHD simulations. This proposal was a considerable driver for the present work. The authors also thank D. Klir for useful discussions of the Z-pinch high-energy ion generation experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Garanin.

Additional information

Translated by T. Zezyulina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garanin, S.F., Dolinskii, V.Y. MHD Simulations of Turbulent Development of the Z-pinch Sausage Instability. Plasma Phys. Rep. 47, 814–825 (2021). https://doi.org/10.1134/S1063780X21080031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X21080031

Keywords:

Navigation