Skip to main content
Log in

Modulation Instability of Bright Envelope Soliton and Rogue Waves in Ultra-relativistic Degenerate Dense Electron–Ion–Positron Plasma

  • NONLINEAR PHENOMENA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Modulation instability, bright envelope soliton, and rogue waves of ion acoustic waves in dense plasma consisting of ultra-relativistic degenerate electrons and positrons, cold and mobile inertial ions, and negatively charged static dust particles have been investigated using Fried and Ichikawa method. Nonlinear Schrödinger equation has been derived and the growth rate of modulationally unstable ion acoustic wave in such plasma are discussed. It has been found that ion acoustic wave will be always modulationally unstable for all possible values of density of positrons, electrons, and charged dust particle. The solutions of envelope solitons and rogue waves are obtained from the nonlinear Schrödinger equation. The theoretical results have been analyzed numerically and graphically for different values of plasma parameters. It is found that only bright envelope soliton would be excited in the ultra-relativistic degenerate plasma. Our results are new and may be applicable for the study of nonlinear wave processes in relativistic degenerate dense plasmas of astrophysical objects, namely, in white dwarfs and neutron stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. S. A. Kaplan and V. N. Tsytovich, Plasma Astrophysics (Nauka, Moscow, 1972; Pergamon, Oxford, 1973), Chaps. 3, 4.

  2. P. Carlqvist, Astrophys. Space. Sci. 87, 21( 1982).

  3. B. Chakraborty, S. N. Paul, M. Khan, and B. Bhattacharyya, Phys. Rep. 114, 182 (1982)

    Google Scholar 

  4. B. Punsly, Black Hole Gravitohydromagnetics (Astrophysics and Space Science Library, Vol. 355) (Springer, New York, 2008), p. 34.

  5. S. V. Bulanov, T. Zh. Esirkepov, M. Kando, J. Koga, K. Kondo, and G. Korn, Plasma Phys. Rep. 41, 1 (2015).

    Article  ADS  Google Scholar 

  6. G. C. Das and S. N. Paul, Phys. Fluids 28, 823 (1985).

    Article  ADS  Google Scholar 

  7. A. Roychowdhury, G. Pakira, and S. N.Paul, IEEE Trans. Plasma Sci. 17, 1989804 (1989)

    Google Scholar 

  8. R. Saeed, A. Shah, and M. Haq, Phys. Plasmas 17, 102301 (2010).

    Article  ADS  Google Scholar 

  9. B. C.Kalita, R. Das, and H. K. Sarmah, Phys. Plasmas 18, 012304 (2011).

    Article  ADS  Google Scholar 

  10. H. Pakzad, Astrophys. Space. Sci. 332, 269 (2011).

    Article  ADS  Google Scholar 

  11. N. C. Lee, Phys. Plasmas 19, 082303 (2012).

    Article  ADS  Google Scholar 

  12. B. Ghosh and S. Banerjee, J. Plasma Phys. 81, 905810308 (2015).

    Article  Google Scholar 

  13. B. Sahu, Pramana 76, 933 ( 2011) .

    Article  ADS  Google Scholar 

  14. B. Ghosh, S. Chandra, and S. N. Paul, Pramana 78, 779 (2012).

    Article  ADS  Google Scholar 

  15. S. Chandra and B. Ghosh, Indian J. Pure Applied Phys. 51, 627 (2013).

    Google Scholar 

  16. M. McKerr, F. Haas, and I. Kourakis, Phys. Plasmas 23, 052120 (2016).

    Article  ADS  Google Scholar 

  17. S. Chandrasekhar, Philos. Mag. 11, 592 (1931).

    Article  Google Scholar 

  18. S. Chandrasekhar, Mon. Not. R. Astron. Soc. 170, 405 (1935).

    Google Scholar 

  19. H. A. Shah, W. Masood, M. N. S. Qureshi, and N. L. Tsintsadze, Phys. Plasmas 18, 102306 (2011).

    Article  ADS  Google Scholar 

  20. W. Masood and B. Eliasson, Phys. Plasmas 18, 034503 (2011).

    Article  ADS  Google Scholar 

  21. S. Chandra, B. Ghosh, and S. N. Paul, Astrophys. Space Sci. 343, 213 (2013).

    Article  ADS  Google Scholar 

  22. S. Chandra, S. Das, A. Chandra, B. Ghosh, and A. Jash, WASET Int. J. Math. Comp. Phys. Elect. Comp. Eng. 9, 305 (2015).

    Google Scholar 

  23. A. A. Mamun and P. K. Shukla, Phys. Plasmas 17, 104504 (2010).

    Article  ADS  Google Scholar 

  24. A. A. Mamun and P. K. Shukla, Phys. Lett. A 374, 4238 (2010).

    Article  ADS  Google Scholar 

  25. A. Esfandyari-Kalejahi, M. Akbari-Moghanjoughi, and E. Saberian, Plasma Fusion Res. 5, 045 (2010).

  26. N. Roy, M. S. Zobaer, and A. A. Mamun, J. Mod. Phys. 3, 850 (2012).

    Article  Google Scholar 

  27. A. Rahman, I. Kourakis, and A. Qamar, IEEE Trans. Plasma Sci. 43, 974 (2015).

    Article  ADS  Google Scholar 

  28. M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and F. T. Arecchi, Phys. Rep. 528, 47 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  29. H. Bailung, S. K. Sharma, and Y. Nakamura, Phys. Rev. Lett. 107, 255005 ( 2011).

  30. A. Ankievicz, N. Devine, and N. Akhmediev, Phys. Lett. A 373, 3997 (2009).

    Article  ADS  Google Scholar 

  31. Y. Y. Wang, J. T. Li, C. Q. Dai, and J. F. Zang, Phys. Lett. A 337, 2097 (2013).

    Article  ADS  Google Scholar 

  32. D. E. Fried and Y. H. Ichikawa, J. Phys. Soc. Jpn. 34, 1073 (1973).

    Article  ADS  Google Scholar 

  33. S. N. Paul and A. Roychowdhury, Chaos Solitons Fract. 91, 406 (2016).

    Article  ADS  Google Scholar 

  34. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, Phys. Rev. E 80, 026601 (2009).

    Article  ADS  Google Scholar 

  35. Active Galactic Nuclei, Ed. by H. R. Miller and P. J. Witta (Springer, Berlin, 1987).

    Google Scholar 

  36. F. C. Michel, Rev. Mod. Phys. 54, 1 (1982).

    Article  ADS  Google Scholar 

  37. S. Ali, W. W. Moslem, P. K. Shukla, and R. Schlickeiser, Phys. Plasmas 14, 082307 (2007).

    Article  ADS  Google Scholar 

  38. M. J. Rees, The Very Early Universe (Cambridge University Press, Cambridge, 1983).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the reviewer for his constructive comments for the improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. N. Paul or A. R. Chowdhury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, S.N., Chowdhury, A.R. & Paul, I. Modulation Instability of Bright Envelope Soliton and Rogue Waves in Ultra-relativistic Degenerate Dense Electron–Ion–Positron Plasma. Plasma Phys. Rep. 45, 1011–1025 (2019). https://doi.org/10.1134/S1063780X19110072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X19110072

Navigation