Skip to main content
Log in

Investigation of the Influence of Injection Parameters on Particles Motion in Electric and Magnetic Fields for Designing Plasma Separation Technique

  • PLASMA DIAGNOSTICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The paper continues studies of the capabilities of plasma treatment of spent nuclear fuel and radioactive waste. The study is devoted to the problem of integration of the plasma source and separator, while the initial conditions of the substance input are considered by taking into account the possibilities of the process implementation. The results of calculations are presented in the one-particle approximation of 3D trajectories of the substance ions simulating the components of spent nuclear fuel. The calculations have been performed for the magnetic field generated by the coils and for the model configurations of the electric field approximated for the experimental capabilities. The electric potential configurations and the initial conditions pertinent to plasma injection along the magnetic field have been proposed, which allow efficiently separating singly charged ions of model substances characterized by masses of 150 and 240 amu, energies in the range of 0.02–20 eV, and an initial angular spread in velocities of 60°. The distance between the separated beams with different masses is found to be 10 cm for the characteristic separator size of 1 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. V. A. Zhil’tsov, V. M. Kulygin, N. N. Semashko, A. A. Skovoroda, V. P. Smirnov, A. V. Timofeev, E. G. Kudryavtsev, V. I. Rachkov, and V. V. Orlov, At. Energ. 101, 302 (2006).

  2. Reprocessing and Recycling of Spent Nuclear Fuel, Ed. by R. Taylor (WHP, Cambridge, 2015).

    Google Scholar 

  3. A. Y. Shadrin, K. N. Dvoeglazov, A. G. Maslennikov, V. A. Kashcheev, S. G. Tret’yakova, O. V. Shmidt, V. L. Vidanov, O. A. Ustinov, V. I. Volk, S. N. Veselov, and V. S. Ishunin, Radiochemistry 58, 271 (2016).

    Article  Google Scholar 

  4. Hansoo Lee, Geun-IL Park, Jae-Won Lee, Kweon-Ho Kang, Jin-Mok Hur, Jeong-Guk Kim, Seungwoo Paek, In-Tae Kim, and IL-Je Cho, Sci. Technol. Nucl. Instal. 2013, 343492 (2013).

    Article  Google Scholar 

  5. N. A. Vorona, A. V. Gavrikov, A. A. Samokhin, V. P. Smirnov, and Yu. S. Khomyakov, Yad. Fiz. Inzhinir., No. 11−12, 944 (2014).

  6. E. I. Skibenko, Yu. V. Kovtun, A. M. Egorov, and V. B. Yuferov, Vopr. At. Nauki Tekh., Ser. Fiz. Radiat. Povrezh. Radiat. Materialoved., No. 2, 141 (2011).

  7. Yu. V. Korobkin, N. V. Lebedev, and V. L. Paperny, Tech. Phys. Lett. 38, 254 (2012).

    Article  ADS  Google Scholar 

  8. R. Freeman, S. Agnew, F. Anderegg, B. Cluggish, J. Gilleland, R. Isler, A. Litvak, R. Miller, R. O’Neill, T. Ohkawa, S. Pronko, S. Putvinski, L. Sevier, A. Sibley, K. Umstadter, T. Wade, and D. Winslow, in Proceedings of the 15th Topical Conference on Radio Frequency Power in Plasmas, Moran, WY, 2003, Ed. by C. B. Forest, AIP Conf. Proc. 694, 403 (2003).

  9. V. M. Bardakov, G. N. Kichigin, N. A. Strokin, and E. O. Tsaregorodtsev, Tech. Phys. 55, 1504 (2010).

    Article  Google Scholar 

  10. D. A. Dolgolenko and Yu. A. Muromkin, Phys. Usp. 60, 994 (2017).

    Article  ADS  Google Scholar 

  11. V. P. Smirnov, A. A. Samokhin, N. A. Vorona, and A. V. Gavrikov, Plasma Phys. Rep. 39, 456 (2013).

    Article  ADS  Google Scholar 

  12. A. Gavrikov, S. Kuzmichev, G. Lizyakin, V. Smirnov, R. Timirkhanov, R. Usmanov, and N. Vorona, in Proceedings of the 22nd Topical Conference on Radio-Frequency Power in Plasmas, Aix-en-Provence, 2017, Ed. by J. Hillairet, EPJ Web Conf. 157, 3062 (2017).

  13. G. D. Liziakin, A. V. Gavrikov, Y. A. Murzaev, R. A. Usmanov, and V. P. Smirnov, Phys. Plasmas 23, 123502 (2016).

    Article  ADS  Google Scholar 

  14. G. Liziakin, A. Gavrikov, R. Usmanov, R. Timirkhanov, and V. Smirnov, AIP Adv. 7, 125108 (2017).

    Article  ADS  Google Scholar 

  15. R. Kh. Amirov, N. A. Vorona, A. V. Gavrikov, G. D. Lizyakin, V. P. Polishchuk, I. S. Samoilov, V. P. Smirnov, R. A. Usmanov, and I. M. Yartsev, Plasma Phys. Rep. 41, 808 (2015).

    Article  ADS  Google Scholar 

  16. R. A. Usmanov, R. K. Amirov, A. V. Gavrikov, G. D. Liziakin, V. P. Polistchook, I. S. Samoylov, V. P. Smirnov, N. A. Vorona, and I. M. Yartsev, Phys. Plasmas 25, 063524 (2018).

    Article  ADS  Google Scholar 

  17. N. N. Antonov, N. A. Vorona, A. V. Gavrikov, A. A. Samokhin, and V. P. Smirnov, Tech. Phys. 61, 180 (2016).

    Article  Google Scholar 

  18. N. N. Antonov, A. V. Gavrikov, V. P. Smirnov, G. D. Liziakin, R. A. Usmanov, N. A. Vorona, and R. A. Timirkhanov, J. Phys. Conf. Ser. 946, 012171 (2018).

    Article  Google Scholar 

  19. N. N. Antonov, S. N. Zhabin, A. V. Gavrikov, V. P. Smir-nov, and R. A. Timirkhanov, Prikl. Fiz., No. 5, 70 (2016).

  20. V. P. Tarakanov, User’s Manual for Code KARAT (Berkley Research Associates, Springfield, VA, 1992).

    Google Scholar 

  21. N. Antonov, G. Liziakin, R. Usmanov, Y. Murzaev, A. Gavrikov, and V. Smirnov, in Proceedings of the IX International Conference on Plasma Physics and Plasma Technology, Minsk, 2018, Ed. by N. V. Tarasenko, A. A. Nevar, and N. N. Tarasenka (Kovcheg, Minsk, 2018), p. 331.

  22. H. Conrads and M. Schmidt, Plasma Sources Sci. Technol. 9, 441 (2000).

    Article  ADS  Google Scholar 

  23. C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (CRC Press, Boca Raton, FL, 1991).

    Book  Google Scholar 

  24. A. V. Gavrikov, V. S. Sidorov, V. P. Smirnov, and V. P. Tarakanov, J. Phys. Conf. Ser. 774, 012197 (2016).

    Article  Google Scholar 

  25. A. V. Gavrikov, V. S. Sidorov, V. P. Smirnov, and V. P. Tarakanov, J. Phys. Conf. Ser. 946, 012172 (2018).

    Article  Google Scholar 

  26. R. K. Amirov, N. A. Vorona, A. V. Gavrikov, G. D. Liziakin, V. P. Polistchook, I. S. Samoylov, V. P. Smir-nov, R. A. Usmanov, and I. M. Yartsev, J. Phys. Conf. Ser. 830, 012059 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, grant no. 14-29-00231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Timirkhanov.

Additional information

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, V.P., Gavrikov, A.V., Sidorov, V.S. et al. Investigation of the Influence of Injection Parameters on Particles Motion in Electric and Magnetic Fields for Designing Plasma Separation Technique. Plasma Phys. Rep. 44, 1104–1113 (2018). https://doi.org/10.1134/S1063780X18120097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18120097

Navigation