Skip to main content
Log in

Ignition of Hydrocarbon–Oxygen Mixtures by Means of a Nanosecond Surface Dielectric Barrier Discharge

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Ignition of hydrocarbon–oxygen mixtures by means of a nanosecond surface dielectric barrier discharge (NSDBD) was studied experimentally. The propagation velocity of the flame wave and the ignition delay time in mixtures of oxygen with methane, ethane, ethylene, and dimethyl ether were measured using a high-speed camera. The experiments were carried out at room temperature and gas mixture pressures in the range of 0.75–1.25 atm. It is shown that, for all hydrocarbons under study, the flame velocity decreases with reducing pressure and stoichiometric ratio, as well as when the mixture is diluted with molecular nitrogen. Theoretical analysis of the processes in the NSDBD plasma and measurements of the flame velocity in hydrocarbon-containing mixtures without plasma agree qualitatively with the measurement results, except for the increasing dependence of the flame velocity on the pressure, which is decreasing in experiments without a discharge plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J. C. Whitehead, A. B. Murphy, A. F. Gutsol, S. Starikovskaia, U. Kortshagen, J.-P. Boeuf, T. J. Sommerer, M. J. Kushner, U. Czarnetzki, et al., J. Phys. D 45, 253001 (2012).

    Article  ADS  Google Scholar 

  2. S. M. Starikovskaia, J. Phys. D 39, R265 (2006).

    Google Scholar 

  3. N. A. Popov, High Temp. 45, 261 (2007).

    Article  Google Scholar 

  4. I. V. Adamovich, I. Choi, N. Jiang, J.-H. Kim, S. Keshav, W. R. Lempert, E. Mintusov, M. Nishihara, M. Samimy, and M. Uddi, Plasma Sources Sci. Technol. 18, 034018 (2009).

    Article  ADS  Google Scholar 

  5. A. Starikovskiy and N. Aleksandrov, Progr. Energy Comb. Sci. 39, 61 (2013).

    Article  Google Scholar 

  6. S. M. Starikovskaia, J. Phys. D 47, 353001 (2014).

    Article  ADS  Google Scholar 

  7. I. V. Adamovich and W. R. Lempert, Plasma Phys. Controlled Fusion 57, 014001 (2014).

    Article  ADS  Google Scholar 

  8. Y. Ju and W. Sun, Progr. Energy Comb. Sci. 48, 21 (2015).

    Article  Google Scholar 

  9. T. C. Corke, M. L. Post, and D. M. Orlov, Exp. Fluids 46, 1 (2009).

    Article  Google Scholar 

  10. E. J. Moreau, Phys. D 40, 605 (2007).

    Article  ADS  Google Scholar 

  11. A. Starikovskiy and N. Aleksandrov, in Aeronautics and Astronautics, Ed. by M. Mulder (InTech, Rijeka, 2011) p. 55.

    Google Scholar 

  12. I. N. Kosarev, V. I. Khorunzhenko, E. I. Mintoussov, P. N. Sagulenko, N. A. Popov, and S. M. Starikovskaia, Plasma Sources Sci. Technol. 21, 045012 (2012).

    Article  ADS  Google Scholar 

  13. E. M. Anokhin, D. N. Kuzmenko, S. V. Kindysheva, V. R. Soloviev, and N. L. Aleksandrov, Plasma Sources Sci. Technol. 24, 045014 (2015).

    Article  ADS  Google Scholar 

  14. A. Starikovskiy, A. Rakitin, G. Correale, A. Nikipelov, T. Urushihara, and T. Shiraishi, in Proceedings of the 50th Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, TN, 2012, Paper AIAA-2012-0828.

    Google Scholar 

  15. M. A. Boumehdi, S. A. Stapanyan, P. Desgroux, G. Vanhove, and S. M. Starikovskaia, Combust. Flame 162, 1336 (2015).

    Article  Google Scholar 

  16. S. A. Stepanyan, A. Yu. Starikovskiy, N. A. Popov, and S. M. Starikovsaia, Plasma Sources Sci. Technol. 23, 045003 (2014).

    Article  ADS  Google Scholar 

  17. S. A. Shcherbanev, N. A. Popov, and S. M. Starikovskaia, Combust. Flame 176, 272 (2017).

    Article  Google Scholar 

  18. T. A. Semelsberger, R. L. Borup, and H. L. Greene, J. Power Sources 156, 497 (2006).

    Article  ADS  Google Scholar 

  19. A. Yu. Starikovskii, A. A. Nikipelov, M. M. Nudnova, and D. V. Roupassov, Plasma Sourses Sci. Technol. 18, 034015 (2009).

    Article  ADS  Google Scholar 

  20. M. M. Nudnova, IEEE Trans. Plasma Sci. 39, 2164 (2011).

    Article  ADS  Google Scholar 

  21. M. M. Nudnova, S. V. Kindysheva, N. L. Aleksandrov, and A. Yu. Starikovskii, Phil. Trans. R. Soc. A 373, 20140330 (2015).

    Article  ADS  Google Scholar 

  22. V. R. Soloviev and V. M. Krivtsov, in Proceedings of the 6th European Conference on Aeronautics and Space Sciences, Krakow, 2015.

    Google Scholar 

  23. V. R. Solov’ev, A. M. Konchakov, V. M. Krivtsov, and N. L. Aleksandrov, Plasma Phys. Rep. 34, 594 (2008).

    Article  ADS  Google Scholar 

  24. V. R. Soloviev and V. M. Krivtsov, J. Phys. D 42, 125208 (2009).

    Article  ADS  Google Scholar 

  25. G. J. H. Hagelaar and L. C. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005).

    Article  ADS  Google Scholar 

  26. A. A. Ionin, I. V. Kochetov, A. P. Napartovich, and N. N. Yuryshev, J. Phys. D 40, R25 (2007).

    Google Scholar 

  27. M. Hayashi, in Swarm Studies and Inelastic Electron− Molecule Collisions, Ed. by L. C. Pitchford, B. V. McCoy, A. Chutjian, and S. Tajmar (Springer-Verlag, New York, 1987), p. 167.

  28. http://garfield.web.cern.ch/garfield/help/garfield_ 41.html.

  29. J. Warnatz, U. Maas, and R. Dibble, Combustion (Springer, Berlin, 2001).

    Book  MATH  Google Scholar 

  30. A. A. Konnov, in Proceedings of the 7th European Combustion Meeting, Budapest, 2015.

    Google Scholar 

  31. Y. L. Wang, A. T. Holley, C. Ji, F. N. Egolfopoulos, T. T. Tsotsis, and H. J. Curran, Proc. Combust. Inst. 32, 1035 (2009).

    Article  Google Scholar 

  32. P. Dirrenberger, Energy Fuels 25, 3875 (2011).

    Article  Google Scholar 

  33. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, Oxford, 1987).

    Google Scholar 

  34. Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, Mathematical Theory of Combustion and Explosion (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Aleksandrov.

Additional information

Original Russian Text © E.M. Anokhin, S.V. Kindysheva, N.L. Aleksandrov, 2018, published in Fizika Plazmy, 2018, Vol. 44, No. 11, pp. 915–924.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anokhin, E.M., Kindysheva, S.V. & Aleksandrov, N.L. Ignition of Hydrocarbon–Oxygen Mixtures by Means of a Nanosecond Surface Dielectric Barrier Discharge. Plasma Phys. Rep. 44, 1066–1075 (2018). https://doi.org/10.1134/S1063780X18110016

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18110016

Navigation