Skip to main content
Log in

Thermodynamic and Transport Properties of Beryllium Vapor in the Supercritical Fluid State

  • Nonideal Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The thermal and caloric equations of state, composition, and conductivity of a supercritical beryllium vapor are calculated using the earlier proposed “3+” chemical model, which incorporates atoms, electrons, ions, and electron jellium with allowance for interatomic and intercharge interactions. The introduction of an electron jellium makes it possible to describe the pressure-induced ionization and explain the increase in the conductivity of beryllium vapor under compression. The cohesive bond of atoms caused by the electron jellium compensates for interactions when calculating the composition and reduces the effect of intercharge interactions on the equation of state. The parameters of the beryllium critical point and the applicability domain of the model are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. B. Zel’dovich and L. D. Landau, Zh. Eksp. Teor. Fiz. 14, 32 (1944).

    Google Scholar 

  2. V. V. Brazhkin, A. G. Lyapin, V. N. Ryzhov, K. Trachenko, Yu. D. Fomin, and E. N. Tsiok, Phys. Usp. 55, 1061 (2012).

    Article  ADS  Google Scholar 

  3. I. K. Kikoin and A. P. Senchenkov, Fiz. Met. Metalloved. 24, 843 (1967).

    Google Scholar 

  4. G. Franz, W. Freyland, and F. Hensel, J. Phys. Colloq. 41, C8-70 (1980).

    Google Scholar 

  5. F. Hensel, Phys. Scr. 25, 283 (1989).

    Article  Google Scholar 

  6. F. Hensel, J. Phys. Condens. Matter 2, A33 (1990).

    Google Scholar 

  7. Metal-to-Nonmetal Transitions, Ed. by R. Redmer, F. Hensel, and B. Holst (Springer, Berlin, 2010).

    MATH  Google Scholar 

  8. P. P. Edwards, M. T. J. Lodge, F. Hensel, and R. Redmer, Phil. Trans. R. Soc. A 368, 941 (2010).

    Article  ADS  Google Scholar 

  9. N. F. Mott, Proc. Phys. Soc. A 62, 416 (1949).

    Article  ADS  Google Scholar 

  10. V. E. Fortov, A. N. Dremin, and A. A. Leont’ev, High Temp. 13, 984 (1975).

    Google Scholar 

  11. D. A. Young and B. J. Alder, Phys. Rev. A 3, 364 (1971).

    Article  ADS  Google Scholar 

  12. A. L. Khomkin and A. S. Shumikhin, JETP 121, 521 (2015).

    Article  ADS  Google Scholar 

  13. A. W. DeSilva and J. D. Katsouros, Phys. Rev. E 57, 5945 (1998).

    Article  ADS  Google Scholar 

  14. A. W. DeSilva and A. D. Rakhel, Contrib. Plasma Phys. 45, 236 (2005).

    Article  ADS  Google Scholar 

  15. P. Renaudin, C. Blancard, J. Clerouin, G. Faussurier, P. Noiret, and V. Recoules, Phys. Rev. Lett. 91, 075002 (2003).

    Article  ADS  Google Scholar 

  16. J. Clerouin, P. Noiret, V. N. Korobenko, and A. D. Rakhel, Phys. Rev. B 78, 224203 (2008).

    Article  ADS  Google Scholar 

  17. V. N. Korobenko and A. D. Rakhel, Phys. Rev. B 85, 014208 (2012).

    Article  ADS  Google Scholar 

  18. R. Redmer, Phys. Rev. E 59, 1073 (1999).

    Article  ADS  Google Scholar 

  19. E. M. Apfelbaum, J. Phys. A 39, 4407 (2006).

    Article  ADS  Google Scholar 

  20. S. Kuhlbrodt, B. Holst, and R. Redmer, Contrib. Plasma Phys. 45, 73 (2005).

    Article  ADS  Google Scholar 

  21. D. V. Minakov, P. R. Levashov, K. V. Khishchenko, and V. E. Fortov, J. Appl. Phys. 115, 223512 (2014).

    Article  ADS  Google Scholar 

  22. T. Sjostrom, S. Crockett, and S. Rudin, Phys. Rev. B 94, 144101 (2016).

    Article  ADS  Google Scholar 

  23. D. V. Knyazev and P. R. Levashov, Phys. Plasmas 21, 073302 (2014).

    Article  ADS  Google Scholar 

  24. C. Wang, Yu-J. Zhang, Ze-Q. Wu, and P. Zhang, Phys. Plasmas 21, 032711 (2014).

    Article  ADS  Google Scholar 

  25. M. P. Desjarlais, J. D. Kress, and L. A. Collins, Phys. Rev. E 66, 025401 (2002).

    Article  ADS  Google Scholar 

  26. S. Mazevet, M. P. Desjarlais, L. A. Collins, J. D. Kress, and N. H. Magee, Phys. Rev. E 71, 016409 (2005).

    Article  ADS  Google Scholar 

  27. J. Clerouin, P. Renaudin, Y. Laudernet, P. Noiret, and M. P. Desjarlais, Phys. Rev. B 71, 064203 (2005).

    Article  ADS  Google Scholar 

  28. S. Zhang, K. P. Driver, F. Soubiran, and B. Militzer, J. Chem. Phys. 146, 074505 (2017).

    Article  ADS  Google Scholar 

  29. K. P. Driver, F. Soubiran, S. Zhang, and B. Militzer, High Energy Density Phys. 23, 81 (2017).

    Article  ADS  Google Scholar 

  30. A. A. Ovechkin, P. A. Loboda, and A. L. Falkov, High Energy Density Phys. 20, 38 (2016).

    Article  ADS  Google Scholar 

  31. Y. Hou, Y. Fu, R. Bredow, D. Kang, R. Redmer, and J. Yuan, High Energy Density Phys. 22, 21 (2017).

    Article  ADS  Google Scholar 

  32. J. Clerouin, P. Noiret, P. Blottiau, V. Recoules, B. Siberchicot, P. Renaudin, C. Blancard, G. Faussurier, B. Holst, and C. E. Starrett, Phys. Plasmas 19, 082702 (2012).

    Article  ADS  Google Scholar 

  33. J. W. Arblaster, J. Phase Equilib. Diffus. 37, 581 (2016).

    Article  Google Scholar 

  34. C. E. Ragan, III, Phys. Rev. A 25, 3360 (1982).

    Article  ADS  Google Scholar 

  35. W. J. Nellis, J. A. Moriarty, A. C. Mitchell, and N. C. Holmes, J. Appl. Phys. 82, 2225 (1997).

    Article  ADS  Google Scholar 

  36. R. Cauble, T. S. Perry, D. R. Bach, K. S. Budil, B. A. Hammel, G. W. Collins, D. M. Gold, J. Dunn, P. Celliers, L. B. Da Silva, M. E. Foord, R. J. Wallace, R. E. Stewart, and N. C. Woolsey, Phys. Rev. Lett. 80, 1248 (1998).

    Article  ADS  Google Scholar 

  37. A. V. Bushman, I. V. Lomonosov, and V. E. Fortov, Equations of State of Metals at High Energy Densities (IPKhF RAN, Chernogolovka, 1992).

    Google Scholar 

  38. A. A. Likalter, Phys. A (Amsterdam) 311, 137 (2002).

    Article  ADS  Google Scholar 

  39. E. M. Apfelbaum, J. Phys. Chem. B 116, 14660 (2012).

    Article  Google Scholar 

  40. O. V. Rogankov, Jr., V. A. Mazur, and V. B. Rogankov, Fluid Phase Equilib. 455, 15 (2018).

    Article  Google Scholar 

  41. C. Wang, Y. Long, M. F. Tian, X. T. He, and P. Zhang, Phys. Rev. E 87, 043105 (2013).

    Article  ADS  Google Scholar 

  42. D. Li, H. Liu, S. Zeng, C. Wang, Z. Wu, P. Zhang, and J. Yan, Sci. Rep. 4, 5898 (2015).

    Article  Google Scholar 

  43. Y. H. Ding and S. X. Hu, Phys. Plasmas 24, 062702 (2017).

    Article  ADS  Google Scholar 

  44. A. L. Khomkin and A. S. Shumikhin, JETP 124, 1001 (2017).

    Article  ADS  Google Scholar 

  45. A. L. Khomkin and A. S. Shumikhin, JETP 123, 891 (2016).

    Article  ADS  Google Scholar 

  46. A. L. Khomkin and A. S. Shumikhin, Contrib. Plasma Phys. 58, 143 (2018).

    Article  ADS  Google Scholar 

  47. A. L. Khomkin and A. S. Shumikhin, High Temp. 54, 796 (2016).

    Article  Google Scholar 

  48. A. L. Khomkin, I. A. Mulenko, and A. S. Shumikhin, High Temp. 42, 842 (2004).

    Article  Google Scholar 

  49. A. Banerjia and J. R. Smith, Phys. Rev. B 37, 6632 (1988).

    Article  ADS  Google Scholar 

  50. J. H. Rose, J. R. Smith, F. Guinea, and J. Ferrante, Phys. Rev. B 29, 2963 (2014).

    Article  ADS  Google Scholar 

  51. V. E. Fortov, A. G. Khrapak, and I. T. Yakubov, Physics of Nonideal Plasma (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  52. A. L. Khomkin and A. S. Shumikhin, High Temp. 52, 328 (2014).

    Article  Google Scholar 

  53. A. A. Radtsig and B. M. Smirnov, Reference Data on Atoms, Molecules, and Ions (Atomizdat, Moscow, 1980; Springer-Verlag, Berlin, 1985).

    Google Scholar 

  54. A. R. Regel and A. F. Ioffe, Prog. Semicond. 4, 237 (1960).

    Google Scholar 

  55. D. N. Nikolaev, V. Y. Ternovoi, A. A. Pyalling, and A. S. Filimonov, Int. J. Thermophys. 23, 1311 (2002).

    Article  Google Scholar 

  56. A. N. Emelyanov, D. N. Nikolaev, and V. Y. Ternovoi, High Temp. High Press. 37, 279 (2008).

    Google Scholar 

  57. W. Ebeling and G. E. Norman, J. Stat. Phys. 110, 861 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Khomkin.

Additional information

Original Russian Text © A.L. Khomkin, A.S. Shumikhin, 2018, published in Fizika Plazmy, 2018, Vol. 44, No. 10, pp. 832–838.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khomkin, A.L., Shumikhin, A.S. Thermodynamic and Transport Properties of Beryllium Vapor in the Supercritical Fluid State. Plasma Phys. Rep. 44, 958–964 (2018). https://doi.org/10.1134/S1063780X18100070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18100070

Navigation