Skip to main content
Log in

3D Magnetic Holes in Collisionless Plasmas

  • Space Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Recent multispacecraft observations in the Earth’s magnetosphere have revealed an abundance of magnetic holes—localized magnetic field depressions. These magnetic holes are characterized by the plasma pressure enhancement and strongly localized currents flowing around the hole boundaries. There are several numerical and analytical models describing 2D configurations of magnetic holes, but the 3D distribution of magnetic fields and electric currents is studied poorly. Such a 3D magnetic field configuration is important for accurate investigation of charged particle dynamics within magnetic holes. Moreover, the 3D distribution of currents can be used for distant probing of magnetic holes in the magnetosphere. In this study, a 3D magnetic hole model using the single-fluid approximation and a spatial scale hierarchy with the distinct separation of gradients is developed. It is shown that such 3D holes can be obtained as a generalization of 1D models with the plasma pressure distribution adopted from the kinetic approach. The proposed model contains two magnetic field components and field-aligned currents. The magnetic field line configuration resembles the magnetic trap where hot charged particles bounce between mirror points. However, the approximation of isotropic pressure results in a constant plasma pressure along magnetic field lines, and the proposed magnetic hole model does not confine plasma along the field direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. T. Russell, L. K. Jian, J. G. Luhmann, T. L. Zhang, F. M. Neubauer, R. M. Skoug, X. Blanco-Cano, N. Omidi, and M. M. Cowee, Geophys. Rev. Lett. 35, L15101 (2008).

    Article  ADS  Google Scholar 

  2. O. A. Amariutei, S. N. Walker, and T. L. Zhang, Ann. Geophys. 29, 717 (2011).

    Article  ADS  Google Scholar 

  3. L. F. Burlaga, N. F. Ness, and M. H. Acuna, J. Geophys. Res. 112, A07106 (2007).

    ADS  Google Scholar 

  4. B. T. Tsurutani, G. S. Lakhina, O. P. Verkhoglyadova, E. Echer, F. L. Guarnieri, Y. Narita, and D. O. Constantinescu, J. Geophys. Res. 116, A02103 (2011).

    ADS  Google Scholar 

  5. M. Volwerk, I. Richter, B. Tsurutani, C. Götz, K. Altwegg, T. Broiles, J. Burch, C. Carr, E. Cupido, M. Delva, M. Dósa, N. J. T. Edberg, A. Eriksson, P. Henri, C. Koenders, et al., Ann. Geophys. 34, 1 (2016).

    Article  ADS  Google Scholar 

  6. J. Soucek, E. Lucek, and I. Dandouras, J. Geophys. Res. 113, A04203 (2008).

    Article  ADS  Google Scholar 

  7. M. Volwerk, D. Schmid, B. T. Tsurutani, M. Delva, F. Plaschke, Y. Narita, T. Zhang, and K.-H. Glassmeier, Ann. Geophys. 34, 1099 (2016).

    Article  ADS  Google Scholar 

  8. Y. S. Ge, J. P. McFadden, J. Raeder, V. Angelopoulos, D. Larson, and O. D. Constantinescu, J. Geophys. Res. 116, A01209 (2011).

    Article  ADS  Google Scholar 

  9. M. A. Balikhin, D. G. Sibeck, A. Runov, and S. N. Walker, J. Geophys. Res. 117, A08229 (2012).

    ADS  Google Scholar 

  10. T. Sundberg, D. Burgess, and C. T. Haynes, J. Geophys. Res. 120, 2600 (2015).

    Article  Google Scholar 

  11. R. J. Fitzenreiter and L. F. Burlaga, J. Geophys. Res. 83, 5579 (1978).

    Article  ADS  Google Scholar 

  12. V. Roytershteyn, H. Karimabadi, and A. Roberts, Phil. Trans. R. Soc. A 373, 20140151 (2015).

    Article  ADS  Google Scholar 

  13. P. I. Shustov, A. V. Artemyev, I. Y. Vasko, and E. V. Yushkov, Phys. Plasmas 23, 122903 (2016).

    Article  ADS  Google Scholar 

  14. C. T. Haynes, D. Burgess, E. Camporeale, and T. Sundberg, Phys. Plasmas 22, 012309 (2015).

    Article  ADS  Google Scholar 

  15. Z.-Y. Li, W.-J. Sun, X.-G. Wang, Q.-Q. Shi, C.-J. Xiao, Z.-Y. Pu, X.-F. Ji, S.-T. Yao, and S.-Y. Fu, J. Geophys. Res. 121, 4180 (2016).

    Article  Google Scholar 

  16. K. A. Goodrich, R. E. Ergun, and J. E. Stawarz, Geophys. Rev. Lett. 43, 6044 (2016).

    Article  ADS  Google Scholar 

  17. D. J. Gershman, J. C. Dorelli, A. F. Vinas, L. A. Avanov, U. Gliese, A. C. Barrie, V. Coffey, M. Chandler, C. Dickson, E. A. MacDonald, C. Salo, M. Holland, Y. Saito, J.-A. Sauvaud, B. Lavraud, et al., Geophys. Rev. Lett. 43, 4112 (2016).

    Article  ADS  Google Scholar 

  18. X.-J. Zhang, A. Artemyev, V. Angelopoulos, and R. B. Horne, J. Geophys. Res. Space Phys. 122, 10304 (2017).

    Article  ADS  Google Scholar 

  19. K. A. Goodrich, R. E. Ergun, F. D. Wilder, J. Burch, R. Torbert, Y. Khotyaintsev, P.-A. Lindqvist, C. Russell, R. Strangeway, W. Magnes, D. Gershman, B. Giles, R. Nakamura, J. Stawarz, J. Holmes, et al., Geophys. Rev. Lett. 43, 5953 (2016).

    Article  ADS  Google Scholar 

  20. E. A. Kuznetsov, T. Passot, and P. L. Sulem, Phys. Rev. Lett. 98, 235003 (2007).

    Article  ADS  Google Scholar 

  21. E. A. Kuznetsov, T. Passot, V. P. Ruban, and P. L. Sulem, Phys. Plasmas 22, 042114 (2015).

    Article  ADS  Google Scholar 

  22. J. Birn, A. V. Artemyev, D. N. Baker, M. Echim, M. Hoshino, and L. M. Zelenyi, Space Sci. Rev. 173, 49 (2012).

    Article  ADS  Google Scholar 

  23. G. Paschmann, M. Øieroset, and T. Phan, Space Sci. Rev. 178, 385 (2013).

    Article  ADS  Google Scholar 

  24. K. Schindler and J. Birn, Phys. Rep. 47, 109 (1978).

    Article  ADS  Google Scholar 

  25. O. D. Constantinescu, J. Atmos. Solar-Terr. Phys. 64, 645 (2002).

    Article  ADS  Google Scholar 

  26. R. B. Nicholson, Phys. Fluids 6, 1581 (1963).

    Article  ADS  Google Scholar 

  27. J. Birn, R. R. Sommer, and K. Schindler, J. Geophys. Res. 82, 147 (1977).

    Article  ADS  Google Scholar 

  28. D. P. Stern, Am. J. Phys. 38, 494 (1970).

    Article  ADS  Google Scholar 

  29. A. A. Skovoroda, Magnetic Systems for Plasma Confinement (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  30. V. D. Shafranov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1966), Vol. 2, p. 103.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Shustov.

Additional information

Published in Russian in Fizika Plazmy, 2018, Vol. 44, No. 8, pp. 642–651.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shustov, P., Artemyev, A., Yushkov, E. et al. 3D Magnetic Holes in Collisionless Plasmas. Plasma Phys. Rep. 44, 729–737 (2018). https://doi.org/10.1134/S1063780X18080068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18080068

Navigation