Skip to main content
Log in

Simulation of the Plasma Afterglow in the Discharge Gap of a Subnanosecond Switch Based on an Open Discharge in Helium

  • Plasma Dynamics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The phenomenon of subnanosecond electrical breakdown in a strong electric field observed in an open discharge in helium at pressures of 6–20 Torr can be used to create ultrafast plasma switches triggering into a conducting state for a time shorter than 1 ns. To evaluate the possible repetition rate of such a subnanosecond switch, it is interesting to study the decay dynamics of the plasma remaining in the discharge gap after ultrafast breakdown. In this paper, a kinetic model based on the particle-in-cell Monte Carlo collision method is used to study the dynamics of the plasma afterglow in the discharge gap of a subnanosecond switch operating with helium at a pressure of 6 Torr. The simulation results show that the radiative, collisional-radiative, and three-body collision recombination mechanisms significantly contribute to the afterglow decay only while the plasma density remains higher than 1012 cm−3; the main mechanism of the further plasma decay is diffusion of plasma particles onto the wall. Therefore, the effect of recombination in the plasma bulk is observed only during the first 10–20 μs of the afterglow. Over nearly the same time, plasma electrons become thermalized. The afterglow time can be substantially reduced by applying a positive voltage Uc to the cathode. Since diffusive losses are limited by the ion mobility, the additional ion drift toward the wall significantly accelerates plasma decay. As Uc increases from 0 to +500 V, the characteristic time of plasma decay is reduced from 35 to 10 μs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Bokhan, P. P. Gugin, M. A. Lavrukhin, I. V. Schweigert, A. L. Alexandrov, and Dm. E. Zakrevsky, Generation of Runaway Electrons and X-rays in High Pressure Gases, Ed. by V. F. Tarasenko (Nova Science, New York, 2016), Vol. 1, p.221.

    Google Scholar 

  2. P. Bokhan, P. Gugin, Dm. Zakrevsky, and M. Lavrukhin, Phys. Plasmas 20, 033507 (2013).

    Article  ADS  Google Scholar 

  3. P. A. Bokhan and Dm. E. Zakrevsky, Phys. Rev. E 88, 013105 (2013).

    Article  ADS  Google Scholar 

  4. I. V. Schweigert, A. L. Alexandrov, P. A. Bokhan, and Dm. E. Zakrevsky, Phys. Rev. E 90, 051101 (2014).

    Article  ADS  Google Scholar 

  5. I. V. Schweigert, A. L. Alexandrov, P. A. Bokhan, and Dm. E. Zakrevsky, Plasma Sources Sci. Technol. 24, 044005 (2015).

    Article  ADS  Google Scholar 

  6. I. V. Schweigert, A. L. Alexandrov, P. A. Bokhan, and Dm. E. Zakrevskiy, Plasma Phys. Rep. 42, 666 (2016).

    Article  ADS  Google Scholar 

  7. P. A. Bokhan, P. P. Gugin, D. E. Zakrevskiy, M. A. Kazaryan, M. A. Lavrukhin, and N. A. Lyabin, Quantum Electron. 43, 715 (2013).

    Article  ADS  Google Scholar 

  8. B. M. Smirnov, Sov. Phys. Usp. 20, 119 (1977).

    Article  ADS  Google Scholar 

  9. L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Sov. Phys. Usp. 15, 375 (1973).

    Article  ADS  Google Scholar 

  10. J. Stevefelt, J. Boulmer, and J.-F. Delpech, Phys. Rev. A 12, 1246 (1975).

    Article  ADS  Google Scholar 

  11. M. Flannery, J. Chem. Phys. 95, 8205 (1991).

    Article  ADS  Google Scholar 

  12. Ch. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (McGraw-Hill, New York, 1985).

    Google Scholar 

  13. P. Hartmann, Z. Donko, G. Bano, L. Szalai, and K. Rozsa, Plasma Sources Sci. Technol. 9, 83 (2000).

    Article  Google Scholar 

  14. N. L. Aleksandrov, E. M. Anokhin, S. V. Kindysheva, A. A. Kirpichnikov, I. N. Kosarev, M. M. Nudnova, S. M. Starikovskaia, and A. Yu. Starikovskii, J. Phys. D 45, 255202 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Alexandrov.

Additional information

Original Russian Text © A.L. Alexandrov, I.V. Schweigert, 2018, published in Fizika Plazmy, 2018, Vol. 44, No. 5, pp. 409–415.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandrov, A.L., Schweigert, I.V. Simulation of the Plasma Afterglow in the Discharge Gap of a Subnanosecond Switch Based on an Open Discharge in Helium. Plasma Phys. Rep. 44, 477–483 (2018). https://doi.org/10.1134/S1063780X1805001X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X1805001X

Navigation