Skip to main content
Log in

Plasma chemistry of the sealed-off slab CO laser active medium pumped by radio-frequency discharge with liquid-nitrogen-cooled electrodes

  • Laser Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The long-term time behavior of the output power of a sealed-off cryogenic slab CO laser pumped by a repetitively pulsed RF discharge and operating on the overtone (λ = 2.6–3.5 μm) vibrational−rotational transitions of the CO molecule was studied experimentally. It is shown that adding of an anomalously large amount of oxygen (up to 50% with respect to the CO concentration) to the initial gas mixture CO : He = 1 : 10 leads to a manyfold (by several tens of times) increase in the duration of the laser operating cycle (until lasing failure due to the degradation of the active medium). In this case, the laser life-time without replacement of the active medium reaches 105–106 pulses. Using various diagnostics (including luminescence spectroscopy and IR and UV absorption spectroscopy), regularities in the time-behavior of the concentrations of the main component of the active medium (CO molecules) and the products of plasmachemical reactions (O3, CO2) generated in the discharge gap during the laser operating cycle are revealed. Time correlation between the characteristics of the active medium and the laser output power are analyzed. A phenomenological approach to describing the entirety of plasmachemical, purely chemical, gas-dynamic, and diffusion processes determining the behavior of the laser output characteristics throughout the laser operating cycle is offered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Ionin, in Encyclopedia of Low-Temperature Plasma, Ser. B, Ed. by S. I. Yakovlenko, Vol. XI-4 (Fizmatlit, Moscow, 2005), p. 740 [in Russian].

    Google Scholar 

  2. R. C. Bergman and J. W. Rich, Appl. Phys. Lett. 31, 597 (1977).

    Article  ADS  Google Scholar 

  3. A. A. Ionin, A. K. Kurnosov, A. P. Napartovich, and L. V. Seleznev, Laser Phys. 20, 144 (2010).

    Article  ADS  Google Scholar 

  4. O. V. Budilova, A. A. Ionin, I. O. Kinyaevskiy, Yu. M. Klimachev, A. A. Kotkov, and A. Yu. Kozlov, Opt. Commun. 363, 26 (2016).

    Article  ADS  Google Scholar 

  5. M. M. Mann, AIAA J. 14, 549 (1976).

    Article  ADS  Google Scholar 

  6. S. V. Vetoshkin, A. A. Ionin, Yu. M. Klimachev, A. Yu. Kozlov, A. A. Kotkov, O. A. Rulev, L. V. Seleznev, and D. V. Sinitsyn, Quant. Electron. 37, 111 (2007).

    Article  ADS  Google Scholar 

  7. E. Zeyfang, W. Mayerhofer, and S. Walther, Proc. SPIE 4184, 230 (2001).

    Article  ADS  Google Scholar 

  8. E. A. Trubacheev, Tr. FIAN 102, 3 (1979).

    Google Scholar 

  9. W. Urban, Infrared Phys. Technol. 36, 465 (1995).

    Article  ADS  Google Scholar 

  10. A. I. Maksimov, L. S. Polak, A. F. Sergienko, and D. I. Slovetskii, Khim. Vys. Energ. 13, 358 (1979).

    Google Scholar 

  11. G. M. Grigorian and Yu. Z. Ionikh, Khim. Vys. Energ. 23, 548 (1989).

    Google Scholar 

  12. V. S. Aleinikov and V. I. Masychev, CO2 Lasers (Radio i Svyaz’, Moscow, 1990) [in Russian].

    Google Scholar 

  13. E. Bachem, A. Dax, T. Fink, A. Weidenfeller, M. Schneider, and W. Urban, Appl. Phys. 57, 185 (1993).

    Article  Google Scholar 

  14. S. V. Vetoshkin, A. A. Ionin, Yu. M. Klimachev, A. Yu. Kozlov, A. A. Kotkov, O. A. Rulev, L. V. Seleznev, and D. V. Sinitsyn, Preprint No. 13 (Lebedev Physical Inst., Russ. Acad. Sci., Moscow, 2005).

    Google Scholar 

  15. Y. G. Utkin, M. Goshe, I. V. Adamovich, and J. W. Rich, Opt. Commun. 263, 105 (2006).

    Article  ADS  Google Scholar 

  16. J. Xin, W. Zhang, and W. Jiao, Appl. Phys. Lett. 75, 1369 (1999).

    Article  ADS  Google Scholar 

  17. A. A. Ionin, A. Yu. Kozlov, L. V. Seleznev, and D. V. Sinitsyn, Opt. Commun. 282, 629 (2009).

    Article  ADS  Google Scholar 

  18. A. A. Ionin, A. Yu. Kozlov, L. V. Seleznev, and D. V. Sinitsyn, IEEE J. Quant. Electron. 45, 215 (2009).

    Article  ADS  Google Scholar 

  19. A. A. Ionin, A. Yu. Kozlov, L. V. Seleznev, and D. V. Sinitsyn, Quant. Electron. 39, 229 (2009).

    Article  ADS  Google Scholar 

  20. A. A. Ionin, Yu. M. Klimachev, A. Yu. Kozlov, A. A. Kotkov, L. V. Seleznev, and D. V. Sinitsyn, RF Patent No. 2354019 from April 27, 2009.

    Google Scholar 

  21. A. A. Ionin, Yu. M. Klimachev, A. Yu. Kozlov, A. A. Kotkov, O. A. Rulev, L. V. Seleznev, and D. V. Sinitsyn, Quant. Electron. 37, 231 (2007).

    Article  ADS  Google Scholar 

  22. A. A. Ionin, Yu. M. Klimachev, A. Yu. Kozlov, A. A. Kotkov, and L. V. Seleznev, Quant. Electron. 38, 115 (2008).

    Article  Google Scholar 

  23. A. A. Ionin, Yu. M. Klimachev, A. Yu. Kozlov, A. A. Kotkov, A. K. Kurnosov, A. P. Napartovich, and S. L. Shnyrev, Quant. Electron. 38, 833 (2008).

    Article  ADS  Google Scholar 

  24. G. M. Grigoryan, I. V. Kochetov, and A. K. Kurnosov, J. Phys. D 43, 085201 (2010).

    Article  ADS  Google Scholar 

  25. A. Ionin, A. Kozlov, L. Seleznev, and D. Sinitsyn, Proc. SPIE 7994, 79941 (2011).

    Article  ADS  Google Scholar 

  26. V. V. Lunin, M. P. Popovich, and S. N. Tkachenko, Physical Chemistry of Ozone (Izd. Mosk. Gos. Univ., Moscow, 1998) [in Russian].

    Google Scholar 

  27. A. A. Ionin, A. Yu. Kozlov, L. V. Seleznev, and D. V. Sinitsyn, Preprint No. 1 (Lebedev Physical Inst., Russ. Acad. Sci., Moscow, 2008) [in Russian].

    Google Scholar 

  28. V. P. Chelibanov, S. A. Kazakov, S. G. Lebedev, S. V. Ryabtsev, and A. A. Turenko, in Proceedings of the 1st All-Russian Conference “Ozone and Other Ecologically Safe Oxidants: Science and Technology, Moscow, 2005,” p. 104.

    Google Scholar 

  29. P. Caubet and G. Dorthe, Chemical Phys. Lett. 218, 529 (1994).

    Article  ADS  Google Scholar 

  30. M. Zubek, R. Olszewski, and P. Wolinski, J. Phys. B 30, L791 (1997).

    Article  ADS  Google Scholar 

  31. R. Olszewski, P. Wolinski, and M. Zubek, Chem. Phys. Lett. 297, 537 (1998).

    Article  ADS  Google Scholar 

  32. S. Mori and M. Suzuki, Diamond Relat. Mater. 17, 999 (2008).

    Article  ADS  Google Scholar 

  33. S. Mori and M. Suzuki, in Nanofibers, Ed. by A. Kumar (InTech, Vukovar, 2010), p. 295.

    Google Scholar 

  34. J. L. Walsh, D. X. Liu, F. Iza, M. Z. Rong, and M. G. Kong, J. Phys. D 43, 032001 (2010).

    Article  ADS  Google Scholar 

  35. D. I. Solovetskii, Mechanisms of Chemical Reactions in Nonequilibrium Plasmas (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  36. G. M. Grigorian and I. V. Kochetov, Plasma Phys. Rep. 30, 788 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ionin.

Additional information

Original Russian Text © A.A. Ionin, A.Yu. Kozlov, L.V. Seleznev, D.V. Sinitsyn, 2017, published in Fizika Plazmy, 2017, Vol. 43, No. 9, pp. 733–744.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ionin, A.A., Kozlov, A.Y., Seleznev, L.V. et al. Plasma chemistry of the sealed-off slab CO laser active medium pumped by radio-frequency discharge with liquid-nitrogen-cooled electrodes. Plasma Phys. Rep. 43, 899–909 (2017). https://doi.org/10.1134/S1063780X17090033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X17090033

Navigation