Skip to main content
Log in

Investigation of Halos in Isobar Analog States

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The review is concerned with studies of one-nucleon and two-nucleon halos in isobar analog states of light nuclei with \(A = 6,\,\,12,\,\,13,\,\,14\). The study allow us to investigate manifestations of isotopic invariance in new objects and to relate properties of the neutrino and proton halos. The existence of a halo in isobar analog states has been little studied experimentally so far. It is proposed to solve the problem of experimentally determining the radii of some possible halo states in nuclei from 6Li to 14O that make up isobar analog doublets and triplets. New possible halo candidates are found in the 13C and 13N mirror nuclei, in the \(A\) = 12 and \(A\) = 14 isobar analog multiplets. Note that the isobar analog states with \(T = 1\) in the \(A = 12\) triplet are experimentally investigated for the first time in the transfer and charge-exchange reactions. It is established that the root-mean-square radii of the \({{0}^{ + }}\) states in the \(A = 6\) multiplet coincide within errors. The results are obtained by two independent methods, ANC and MDM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida, N. Yoshikawa, K. Sugimoto, O. Yamakawa, T. Kobayashi, and N. Takahashi, “Measurements of interaction cross-sections and nuclear radii in the light p-shell region,” Phys. Rev. Lett. 55, 2676–2679 (1985).

    Article  ADS  Google Scholar 

  2. A. I. Baz, “Threshold effects in nuclear reactions,” Adv. Phys. 8, 349–374 (1959).

    Article  ADS  Google Scholar 

  3. T. Otsuka, N. Fukunishi, and H. Sagawa, “Structure of exotic neutron-rich nuclei,” Phys. Rev. Lett. 70, 1385–1388 (1993).

    Article  ADS  Google Scholar 

  4. T. L. Belyaeva, R. Perez-Torres, A. A. Ogloblin, A. S. Demyanova, S. N. Ershov, and S. A. Goncharov, “Determination of neutron halo radii in the first excited states of 13C and 11Be with the asymptotic normalization coefficients method,” Phys. Rev. C 90, 064610 (2014).

    Article  ADS  Google Scholar 

  5. I. Tanihata, H. Savajols, and R. Kanungo, “Recent experimental progress in nuclear halo structure studies,” Prog. Part. Nucl. Phys. 68, 215–313 (2013).

    Article  ADS  Google Scholar 

  6. A. A. Ogloblin, A. N. Danilov, T. L. Belyaeva, A. S. Demyanova, S. A. Goncharov, and W. Trzaska, “Observation of abnormally large radii of nuclei in excited states in the vicinity of neutron thresholds,” Phys. At. Nucl. 74, 1548–1561 (2011).

    Article  Google Scholar 

  7. A. A. Ogloblin, A. N. Danilov, T. L. Belyaeva, A. S. Demyanova, S. A. Goncharov, and W. Trzaska, “Effect of neutron halos on excited states of nuclei,” Phys. Rev. C 84, 054601 (2011).

    Article  ADS  Google Scholar 

  8. K. Riisager, “Halos and related structures,” Phys. Scr. 152, 014001 (2013). arXiv:1208.6415 [nucl-ex].

    Article  Google Scholar 

  9. F. Kobayashi and Y. Kanada-En’yo, “Novel cluster states in 10Be,” Phys. Rev. C 86, 064303 (2012). arXiv: 1208.0387 [nucl-th].

    Article  ADS  Google Scholar 

  10. A. S. Demyanova, A. A. Ogloblin, A. N. Danilov, T. L. Belyaeva, S. A. Goncharov, and W. Trzaska, “Proton halo in the 13N nucleus,” JETP Lett. 104, 526–530 (2016).

    Article  ADS  Google Scholar 

  11. T. Minamisono, T. Ohtsubo, I. Minami, S. Fukuda, A. Kitagawa, M. Fukuda, K. Matsuta, Y. Nojiri, S. Takeda, H. Sagawa, and H. Kitagawa, “Proton halo of 8B disclosed by its giant quadrupole moment,” Phys. Rev. Lett. 69, 2058–2061 (1992).

    Article  ADS  Google Scholar 

  12. F. Negoita, C. Borcea, F. Carstoiu, M. Lewitowicz, M. G. Saint-Laurent, R. Anne, D. Bazin, J. M. Corre, P. Roussel-Chomaz, V. Borrel, D. Guillemaud-Mueller, H. Keller, A. C. Mueller, F. Pougheon, O. Sorlin, S. Lukyanov, Y. Penionzhkevich, A. Fomichev, N. Skobelev, O. Tarasov, Z. Dlouhy, and A. Kordyasz, “8B proton halo via reaction and breakup cross section measurements,” Phys. Rev. C 54, 1787–1797 (1996).

    Article  ADS  Google Scholar 

  13. R. Lewis and A. C. Hayes, “Deuteron stripping as a probe of the proton halo in 17F,” Phys. Rev. C 59, 1211–1214 (1999).

    Article  ADS  Google Scholar 

  14. Z. Dongmei, Z. Yongnan, Y. Daqing, Z. Xizhen, Z. Yi, T. Minamisono, M. Matsuta, M. Fukuda, M. Mihara, Z. Chunlei, W. Zhiqiang, D. Enpeng, L. Hailong, X. Guoji, and Z. Shengyun, “Quadrupole moment and a proton halo structure in 17F(Iπ = 5/2+),” J. Phys. G: Nucl. Phys. 34, 523–528 (2007).

    Article  ADS  Google Scholar 

  15. E. Ryberg, C. Forssén, H. W. Hammer, and L. Platter, “Effective field theory for proton halo nuclei,” Phys. Rev. C 89, 014325 (2014). arXiv:1308.5975 [nucl-th].

    Article  ADS  Google Scholar 

  16. A. S. Demyanova, A. A. Ogloblin, S. A. Goncharov, A. N. Danilov, T. L. Belyaeva, and W. Trzaska, “Use of (3He, t) charge-exchange reactions in determining radii of excited states of nuclei,” Phys. Atom. Nucl. 80, 831–837 (2017).

    Article  ADS  Google Scholar 

  17. A. N. Danilov, T. L. Belyaeva, A. S. Demyanova, S. A. Goncharov, and A. A. Ogloblin, “Determination of nuclear radii for unstable states in 12C with diffraction inelastic scattering,” Phys. Rev. C 80, 054603 (2009).

    Article  ADS  Google Scholar 

  18. A. A. Ogloblin, A. N. Danilov, A. S. Demyanova, S. A. Goncharov, T. L. Belyaeva, and W. Trzaska, “Nuclear Particle Correlations and Cluster Physics,” in Nuclear Particle Correlations and Cluster Physics, Ed. by W.-U. Schröder (2017), pp. 311–338.

    Google Scholar 

  19. J. S. Blair, “Inelastic diffraction scattering,” Phys. Rev. 115, 928–938 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  20. G. R. Satchler, Introduction to Nuclear Reactions, 2nd ed. (Macmillan Education, UK, 1990)

    Book  Google Scholar 

  21. A. Lane, “Isobaric spin dependence of the optical potential and quasielastic (p, n) reactions,” Nucl. Phys. A 35, 676–685 (1962).

    Article  Google Scholar 

  22. A. S. Demyanova, A. N. Danilov, A. A. Ogloblin, V. I. Starastsin, S. V. Dmitriev, W. H. Trzaska, S. A. Goncharov, T. L. Belyaeva, V. A. Maslov, Yu. G. Sobolev, Y. E. Penionzhkevich, S. V. Khlebnikov, G. P. Tyurin, N. Burtebaev, D. Janseitov, Y. B. Gurov, J. Louko, and V. M. Sergeev, “States of the 12N nucleus with increased radii,” JETP Lett. 111, 409–415 (2020).

    Article  ADS  Google Scholar 

  23. A. S. Demyanova, A. N. Danilov, A. A. Ogloblin, S. A. Goncharov, T. L. Belyaeva, W. H. Trzaska, and V. I. Starastsin, “Search for signs of neutron and proton halos in the isobaric analog excited states of A = 14 nuclei,” JETP Lett. 112, 463–470 (2020).

    Article  ADS  Google Scholar 

  24. L. D. Blokhintsev, I. Borbely, and E. I. Dolinskii, Sov. J. Part. Nucl. 8, 485–535 (1977).

    Google Scholar 

  25. G. R. Satchler, Direct Nuclear Reactions (Clarendon Press, Oxford, 1983).

    Google Scholar 

  26. Z. H. Liu, C. J. Lin, H. Q. Zhang, Z. C. Li, J. S. Zhang, Y. W. Wu, F. Yang, M. Ruan, J. C. Liu, S. Y. Li, and Z. H. Peng, “Asymptotic normalization coefficients and neutron halo of the excited states in 12B and 13C,” Phys. Rev. C 64, 034312 (2001).

    Article  ADS  Google Scholar 

  27. D. Y. Pang and A. M. Mukhamedzhanov, “Asymptotic normalization coefficients and spectroscopic factors from deuteron stripping reactions,” Phys. Rev. C 90, 044611 (2014).

    Article  ADS  Google Scholar 

  28. M. McCleskey, A. M. Mukhamedzhanov, L. Trache, R. E. Tribble, A. Banu, V. Eremenko, V. Z. Goldberg, Y. W. Lui, E. McCleskey, B. T. Roeder, A. Spiridon, F. Carstoiu, V. Burjan, Z. Hons, and I. J. Thompson, “Determination of the asymptotic normalization coefficients for 14C + n15C, the 14C (n,γ) 15C reaction rate, and evaluation of a new method to determine spectroscopic factors,” Phys. Rev. C 89, 044605 (2014).

    Article  ADS  Google Scholar 

  29. B. Jonson, “Light dripline nuclei,” Phys. Rep. 389, 1–59 (2004).

    Article  ADS  Google Scholar 

  30. C. T. Liang, X. H. Li, and C. H. Cai, “Global 3He optical model potential below 270 MeV,” J. Phys. G: Nucl. Phys. 36, 085104 (2009).

    Article  ADS  Google Scholar 

  31. Y. Zhang, D. Y. Pang, and J. L. Lou, “Optical model potential for deuteron elastic scattering with 1p-shell nuclei,” Phys. Rev. C 94, 014619 (2016). arXiv: 1606.01507.

  32. S. A. Goncharov, O. M. Knyaz’kov, and A. A. Kolozhvari, “Isospin dependence of nucleus-nucleus interaction from data on scattering of isobaric nuclei,” Phys. At. Nucl. 59, 634–646 (1996).

    Google Scholar 

  33. D. T. Khoa and G. R. Satchler, “Generalized folding model for elastic and inelastic nucleus-nucleus scattering using realistic density dependent nucleon-nucleon interaction,” Nucl. Phys. A 668, 3–41 (2000).

    Article  ADS  Google Scholar 

  34. D. T. Khoa, G. R. Satchler, and W. von Oertzen, “Nuclear incompressibility and density dependent NN interactions in the folding model for nucleus-nucleus potentials,” Phys. Rev. C 56, 954–969 (1997).

    Article  ADS  Google Scholar 

  35. S. A. Goncharov, G. Kazacha, and N. Timofeyuk, Preprint No. JINR P4-87-262 (JINR, Dubna, 1987).

  36. B. Sommer and J. G. Zabolitzky, “On numerical Bessel transformation,” Comput. Phys. Commun. 16, 383–387 (1979). https://www.sciencedirect.com/science/ article/pii/0010465579900444.

    Article  ADS  Google Scholar 

  37. O. M. Knyazkov and A. A. Kolozhvary, Izv. Ross. Akad. Nauk, Ser. Fiz. 57, 48–53 (1993).

    Google Scholar 

  38. S. A. Goncharov and A. Izadpanah, “Nucleus-nucleus potential within the semimicroscopic dispersive model on the basis of a corrected folding model potential,” Phys. Atom. Nucl. 70, 18–28 (2007).

    Article  ADS  Google Scholar 

  39. S. A. Goncharov and A. Izadpanah, “Dispersive semimicroscopic analysis of nuclear-nuclear collisions on the basis of a corrected folding-model potential,” Phys. Atom. Nucl. 70, 1491–1499 (2007). https://doi.org/10.1134/S1063778807090037

    Article  ADS  Google Scholar 

  40. S. A. Goncharov and R. V. Sukhorukov, “An approximation for the density matrix in calculations of the mean-field potential of the interaction of nuclei,” Moscow Univ. Phys. Bull. 73, 301–305 (2018). https://doi.org/10.3103/S0027134918030074

    Article  ADS  Google Scholar 

  41. P. D. Kunz and E. Rost, “The Distorted-Wave Born Approximation,” in Computational Nuclear Physics 2: Nuclear Reactions, Ed. by K. Langanke, J. A. Maruhn, and S. E. Koonin (Springer, New York, 1993), pp. 88–107.

    Google Scholar 

  42. I. J. Thompson, “Coupled reaction channels calculations in nuclear physics,” Comput. Phys. Rep. 7, 167–212 (1988).

    Article  ADS  Google Scholar 

  43. T. L. Belyaeva, S. A. Goncharov, A. S. Demyanova, A. A. Ogloblin, A. N. Danilov, V. A. Maslov, Yu. G. Sobolev, W. Trzaska, S. V. Khlebnikov, G. P. Tyurin, N. Burtebaev, D. Janseitov, and E. Mukhamejanov, “Neutron halos in the excited states of 12B,” Phys. Rev. C 98, 034602 (2018). https://link.aps.org/doi/10.1103/PhysRevC.98.034602

    Article  ADS  Google Scholar 

  44. T. L. Belyaeva, N. Zelenskaya, and N. Odintsov, “Computation of correlation characteristics of nuclear reactions induced by semi-heavy ions,” Comput. Phys. Commun. 73, 161–169 (1992). https:// www.sciencedirect.com/science/article/pii/001046559290036X.

    Article  ADS  Google Scholar 

  45. G. Satchler, “Isospin and macroscopic models for the excitation of giant resonances and other collective states,” Nucl. Phys. A 472, 215–236 (1987). https://www.sciencedirect.com/science/article/pii/0375947487902089.

    Article  ADS  Google Scholar 

  46. A. S. Demyanova, A. N. Danilov, S. V. Dmitriev, A. A. Ogloblin, T. L. Belyaeva, N. Burtebaev, P. Drobyshev, S. A. Goncharov, Yu. B. Gurov, P. Heikkinen, R. Julin, S. V. Khlebnikov, V. A. Maslov, N. Nassurlla, Y. E. Penionzhkevich, Yu. G. Sobolev, W. Trzaska, G. P. Tyurin, and V. I. Zherebchevskii, “Spectroscopy of exotic states of 13C,” EPJ Web Conf. 66, 02027 (2014).

  47. T. Yamada and Y. Funaki, “Cluster states and alpha particle condensation in 13C,” Int. J. Mod. Phys. E 17, 2101–2105 (2008). https://doi.org/10.1142/S0218301308011161

    Article  ADS  Google Scholar 

  48. Z. Y. Liu, C. B. Li, S. G. Wang, J. Zhou, Q. I. Meng, S. J. Lu, and S. H. Zhou, “Measurement of change of 7Be decay rate in Be and Au,” Chin. Phys. Lett. 30, 829 (2003). arXiv:nucl-ex/0306002.

    ADS  Google Scholar 

  49. R. J. Peterson, J. R. Shepard, and R. A. Emigh, “Isoscalar and isovector transition amplitudes in A = 13,” Phys. Rev. C 24, 826–840 (1981). https://link.aps.org/doi/10.1103/PhysRevC.24.826

    Article  ADS  Google Scholar 

  50. A. S. Demyanova, A. A. Ogloblin, S. N. Ershov, F. A. Gareev, R. S. Kurmanov, E. F. Svinareva, S. A. Goncharov, V. V. Adodin, N. Burtebaev, J. M. Bang, and J. S. Vaagen, “Rainbows in nuclear reactions and the optical potential,” Phys. Scr. 32, 89–106 (1990). https://doi.org/10.1088/0031-8949/1990/t32/015

    Article  Google Scholar 

  51. A. S. Demyanova, V. I. Starastsin, A. N. Danilov, A. A. Ogloblin, S. V. Dmitriev, S. A. Goncharov, T. L. Belyaeva, V. A. Maslov, Y. G. Sobolev, W. Trzaska, P. Heikkinen, G. P. Gurov, N. Burtebaev, and D. Janseitov, “Possible neutron and proton halo structure in the isobaric analog states of A = 12 nuclei,” Phys. Rev. C 102, 054612 (2020).

    Article  ADS  Google Scholar 

  52. A. Demyanova, V. Starastsin, A. Ogloblin, A. Danilov, S. Dmitriev, W. Trzaska, P. Heikkinen, T. Belyaeva, S. Goncharov, V. Maslov, Yu. Sobolev, Yu. Gurov, B. Chernyshev, N. Burtebaev, D. Janseitov, and S. Khlebnikov, “The spin-parities of the 13.35 MeV state and high-lying excited states around 20 MeV in 12C nucleus,” Eur. Phys. J. A 57, 204 (2021). https://doi.org/10.1140/epja/s10050-021-00515-7

    Article  ADS  Google Scholar 

  53. W. Trzaska, P. Heikkinen, A. Danilov, A. Demyanova, S. Khlebnikov, T. Malamut, V. Maslov, A. Ogloblin, and Yu. Sobolev, “High-resolution scattering experiments at the K130 cyclotron in Jyväskylä,” Nucl. Instrum. Methods Phys. Res., Sect. A 903, 241–245 (2018). https://doi.org/10.1016/j.nima.2018.07.002

    Article  Google Scholar 

  54. G. C. Ball and J. Cerny, “Microscopic analysis of the (3He, t) and (3He, 3He’) reactions on 1 p-shell nuclei,” Phys. Rev. 177, 1466 (1969).

    Article  ADS  Google Scholar 

  55. W. A. Sterrenburg, M. N. Harakeh, S. Y. Van Der Werf, and A. Van Der Woude, “Excitation and Decay of ΔL = 1 modes in 12N via the reaction,” Nucl. Phys. A 405, 109–125 (1983). https://doi.org/10.1016/0375-9474(83)90326-3

    Article  ADS  Google Scholar 

  56. I. Tanihata, T. Kobayashi, O. Yamakawa, S. Shimoura, K. Ekuni, K. Sugimoto, N. Takahashi, T. Shimoda, and H. Sato, “Measurement of interaction cross sections using isotope beams of Be and B and isospin dependence of the nuclear radii,” Phys. Lett. B 206, 592–596 (1988). https://doi.org/10.1016/0370-2693(88)90702-2

    Article  ADS  Google Scholar 

  57. A. Ozawa, I. Tanihata, T. Kobayashi, D. Hirata, O. Yamakawa, K. Omata, N. Takahashi, T. Shimoda, K. Sugimoto, D. Olson, W. Christie, and H. Wieman, “Interaction cross-sections and radii of 11C and 12N, and effective deformation parameters in light mirror nuclei,” Nucl. Phys. A 583, 807–810 (1995). https:// www.sciencedirect.com/science/article/pii/037594749 400763D.

    Article  ADS  Google Scholar 

  58. R. Peterson, H. Bhang, J. Hamill, and T. Masterson, “The 14C(α, α') 14C and 13C(d, p)14C reactions,” Nucl. Phys. A 425, 469–492 (1984). https://www.sciencedirect.com/science/article/pii/0375947484900204.

    Article  ADS  Google Scholar 

  59. L. Zu-Hua, “Halo Nature of 14C, 15C,” Chin. Phys. Lett. 19, 1071–1073 (2002). https://doi.org/10.1088/0256-307x/19/8/313

    Article  ADS  Google Scholar 

  60. R. Peterson and J. Hamill, “Proton stripping to 14N,” Nucl. Phys. A 362, 163–172 (1981). https://www.sciencedirect.com/science/article/pii/0375947481906758.

    Article  ADS  Google Scholar 

  61. A. Ozawa, T. Suzuki, and I. Tanihata, “Nuclear size and related topics,” Nucl. Phys. A 693, 32–62 (2001). https://www.sciencedirect.com/science/article/pii/S037 5947401011526.

    Article  ADS  Google Scholar 

  62. G. C. Ball and J. Cerny, “14N(3He, t)14O reaction and excited isospin triads in mass 14,” Phys. Rev. 155, 1170–1176 (1967). https://link.aps.org/doi/10.1103/PhysRev.155.1170

    Article  ADS  Google Scholar 

  63. A. Negret, T. Adachi, and B. R. Barrett, C. Bäumer, A. M. Van Den Berg, G. P. A. Berg, P. Von Brentano, D. Frekers, D. De Frenne, H. Fujita, K. Fujita, Y. Fujita, E. W. Grewe, P. Haefner, M. N. Harakeh, K. Hatanaka, K. Heyde, M. Hunyadi, E. Jacobs, Yu. Kalmykov, A. Korff, K. Nakanishi, P. Navrátil, P. Von Neumann-Cosel, L. Popescu, S. Rakers, A. Richter, N. Ryezayeva, Y. Sakemi, A. Shevchenko, Y. Shimbara, Y. Shimizu, Y. Tameshige, A. Tamii, M. Uchida, J. Vary, H. J. Wörtche, M. Yosoi, and L. Zamick, “Gamow-Teller strengths in the A = 14 multiplet: A challenge to the shell model,” Phys. Rev. Lett. 97, 062502 (2006). https://link.aps.org/doi/10.1103/PhysRevLett.97.062502

    Article  ADS  Google Scholar 

  64. S. Mezhevych, A. Rudchik, K. Rusek, A. Budzanowski, B. Czech, J. Choiński, L. Glowacka, S. Kliczewski, E. Koshchy, V. Kyryanchuk, A. Mokhnach, A. Rudchik, S. Sakuta, R. Siudak, I. Skwirczyńska, and A. Szczurek, “Excitation of 14C by 45 MeV 11B ions,” Nucl. Phys. A 753, 13–28 (2005). https:// www.sciencedirect.com/science/article/pii/S0375947405002666.

    Article  ADS  Google Scholar 

  65. V. Kukulin, V. Pomerantsev, K. Razikov, V. Voronchev, and G. Ryzhikh, “Detailed study of the cluster structure of light nuclei in a three-body model (IV). Large space calculation for A = 6 nuclei with realistic nuclear forces,” Nucl. Phys. A 586, 151–189 (1995). https:// www.sciencedirect.com/science/article/pii/03759474940 04948.

    Article  ADS  Google Scholar 

  66. F. Robicheaux, “Simple asymptotic potential model for finding weakly bound negative ions,” Phys. Rev. A 60, 1706–1709 (1999). https://link.aps.org/doi/10.1103/PhysRevA.60.1706

    Article  ADS  Google Scholar 

  67. A. S. Jensen, K. Riisager, D. V. Fedorov, and E. Garrido, “Structure and reactions of quantum halos,” Rev. Mod. Phys. 76, 215–261 (2004). https://link.aps.org/doi/10.1103/RevModPhys.76.215

    Article  ADS  Google Scholar 

  68. I. N. Izosimov, “Structure of β-decay strength function S β(E) in halo nuclei,” Phys. Part. Nucl. Lett. 15, 621–626 (2018). https://doi.org/10.1134/s1547477118060092

    Article  Google Scholar 

  69. K. Arai, Y. Suzuki, and K. Varga, “Neutron-proton halo structure of the 3.563-MeV 0+ State in 6Li,” Phys. Rev. C 51, 2488–2493 (1995). https://link.aps.org/doi/10.1103/PhysRevC.51.2488

    Article  ADS  Google Scholar 

  70. K. Arai, Y. Ogawa, Y. Suzuki, and K. Varga, “Structure of the mirror nuclei 9Be and 9B in a microscopic cluster model,” Phys. Rev. C 54, 132–146 (1996). https://link.aps.org/doi/10.1103/PhysRevC.54.132

    Article  ADS  Google Scholar 

  71. Y. Suzuki, “The ground-state structure and the soft dipole mode of the 6He nucleus,” Nucl. Phys. A 528, 395–408 (1991). https://doi.org/10.1016/0375-9474(91)90095-n

    Article  ADS  Google Scholar 

  72. M. V. Zhukov, L. V. Chulkov, B. V. Danilin, and A. A. Korsheninnikov, “Specific structure of the 6He nucleus and fragmentation experiments,” Nucl. Phys. A 533, 428–440 (1991). https://doi.org/10.1016/0375-9474(91)90526-c

    Article  ADS  Google Scholar 

  73. T. Kobayashi, O. Yamakawa, K. Omata, K. Sugimoto, T. Shimoda, N. Takahashi, and I. Tanihata, “Projectile fragmentation of the extremely neutron-rich nucleus 11Li at 0.79 GeV/nucleon,” Phys. Rev. Lett. 60, 2599–2602 (1988). https://link.aps.org/doi/10.1103/PhysRevLett.60.2599

    Article  ADS  Google Scholar 

  74. G. Alkhazov, A. Dobrovolsky, P. Egelhof, H. Geissel, H. Irnich, A. Khanzadeev, G. Korolev, A. Lobodenko, G. Münzenberg, M. Mutterer, S. Neumaier, W. Schwab, D. Seliverstov, T. Suzuki, and A. Vorobyov, “Nuclear matter distributions in the 6He and 8He nuclei from differential cross sections for small-angle proton elastic scattering at intermediate energy,” Nucl. Phys. A 712, 269–299 (2002). https://www.sciencedirect.com/science/article/pii/S0375947402012733

    Article  ADS  Google Scholar 

  75. A. S. Demyanova, A. A. Ogloblin, A. N. Danilov, T. L. Belyaeva, S. A. Goncharov, P. N. Terekhin, and R. V. Sukhorukov, “Possible existence of neutron-proton halo in6Li,” KnE Energy 3, 1 (2018). https://doi.org/10.18502/ken.v3i1.1715

    Article  Google Scholar 

  76. R. Givens, M. Brussel, and A. Yavin, “An experimental study of 3He elastic, inelastic and charge-exchange scattering from 6Li,” Nucl. Phys. A 187, 490–500 (1972). https://www.sciencedirect.com/science/article/pii/0375947472906744.

    Article  ADS  Google Scholar 

  77. S. Sakuta, N. Burtebayev, J. Burtebayeva, A. Duise-bayev, N. Glushchenko, M. Nassurlla, A. Amar, S. Artemov, S. Kliczewski, E. Piasecki, K. Rusek, R. Siudak, A. Trzcińska, and M. Wolińska-Cichocka, “The channel coupling and triton cluster exchange effects in 3He scattering on 6Li nuclei,” Acta Phys. Pol. B 45, 1853 (2014). https://doi.org/10.5506/aphyspolb.45.1853

    Article  ADS  Google Scholar 

  78. N. Burtebayev, J. Burtebayeva, N. Glushchenko, Z. Kerimkulov, A. Amar, M. Nassurlla, S. Sakuta, S. Artemov, S. Igamov, A. Karakhodzhaev, K. Rusek, and S. Kliczewski, “Effects of t- and α-transfer on the spectroscopic information from the 6Li (3He,d)7Be reaction,” Nucl. Phys. A 909, 20–35 (2013). https:// www.sciencedirect.com/science/article/pii/S0375947413 004880.

    Article  ADS  Google Scholar 

  79. O. Bochkarev, L. Chulkov, A. Korsheninnikov, E. Kuz’min, I. Mukha, and G. Yankov, “Democratic decay of 6Be states,” Nucl. Phys. A 505, 215–240 (1989). https://www.sciencedirect.com/science/article/pii/0375947489903710.

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the National Research Center Kurchatov Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Demyanova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by M. Potapov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demyanova, A.S., Danilov, A.N., Dmitriev, S.V. et al. Investigation of Halos in Isobar Analog States. Phys. Part. Nuclei 55, 233–255 (2024). https://doi.org/10.1134/S1063779624020035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779624020035

Navigation