Skip to main content
Log in

A Noninvasive Muonography-Based Method for Exploration of Cultural Heritage Objects

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

An innovative noninvasive method of muonography based on emulsion detectors has been developed. The new method enables detection of changes in the fluxes of atmospheric muons passing through the object under study and determination of the specific features of its internal structure. Owing to the use of the state-of-the-art automated scanning facilities, large-scale studies of natural and industrial objects can be carried out that require processing of large quantity of photoemulsion. A major muonography experiment, in which the internal structure of buildings and the territory of the Svyato-Troitsky Danilov Monastery had been examined, is described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.
Fig. 35.
Fig. 36.
Fig. 37.
Fig. 38.
Fig. 39.
Fig. 40.
Fig. 41.
Fig. 42.
Fig. 43.

Similar content being viewed by others

REFERENCES

  1. K. Borozdin, G. Hogan, C. Morris, C. William, W. C. Priedhorsky, A. Saunders, J. Larry, L. J. Schultz, and M. E. Teasdale, “Radiographic imaging with cosmic-ray muons,” Nature 422, 277 (2003).

    Article  Google Scholar 

  2. H. Gómez, D. Gibert, C. Goy, K. Jourde, Y. Karyotakis, S. Katsanevas, J. Marteau, M. Rosas-Carbajal, and A. Tonazzo, “Forward scattering effects on muon imaging,” J. Instrum. 12, 12018 (2017).

    Article  Google Scholar 

  3. A. B. Aleksandrov, M. S. Vladymyrov, V. I. Galkin, L. A. Goncharova, V. M. Grachev, S. G. Vasina, N. S. Konovalova, A. A. Malovichko, A. K. Managadze, N. M. Okat’eva, N. G. Polukhina, T. M. Roganova, N. I. Starkov, V. E. Tioukov, M. M. Chernyavsky, and T. V. Shchedrina, “Muon radiography method for fundamental and applied research,” Phys.-Usp. 60, 1277–1293 (2017).

    Article  Google Scholar 

  4. S. Procureur, “Muon imaging: Principles, technologies and applications,” Nucl. Instrum. Methods Phys. Res., Sect. A 878, 169–179 (2018).

    Google Scholar 

  5. E. V. Bugaev, A. Misaki, V. A. Naumov, T. S. Sinegovskaya, S. I. Sinegovsky, and N. Takahashi, “Atmospheric muon flux at sea level, underground and underwater,” Phys. Rev. D 58, 054001 (1998).

    Article  Google Scholar 

  6. M. Aglietta, et al. (LVD Collab.), “Study of single muons with the large volume detector at Gran Sasso laboratory,” Phys. Atom. Nucl. 66, 123–129 (2003).

    Article  Google Scholar 

  7. P. A. Zyla, et al. (Particle Data Group), “2020 Review of Particle Physics,” Prog. Theor. Exp. Phys. 2020, C01 (2020).

    Google Scholar 

  8. L. Oláh, G. G. Barnaföldi, G. Hamar, H. G. Melegh, G. Surányi, and D. Varga, “Cosmic muon detection for geophysical applications,” Adv. High Energy Phys. 2013, 560192 (2013).

    Article  Google Scholar 

  9. K. Jourde, D. Gibert, and J. Marteau, J. De Bremond d’Ars, and J.-C. Komorowski, “Muon dynamic radiography of density changes induced by hydrothermal activity at the La Soufriere of Guadeloupe Volcano,” Sci. Rep 6, 33406 (2016).

    Article  Google Scholar 

  10. H. K. M. Tanaka, “Visualization of the internal structure of volcanoes with cosmic-ray muons,” J. Phys. Soc. Jpn. 85, 091016 (2016).

    Article  Google Scholar 

  11. R. Nishiyama, A. Ariga, T. Ariga, S. Käser, A. Lechmann, D. Mair, P. Scampoli, M. Vladymyrov, A. Ereditato, and F. Schlunegger, “First measurement of ice-bedrock interface of alpine glaciers by cosmic muon radiography,” Geophys. Rev. Lett. 44, 6244–6251 (2017).

    Article  Google Scholar 

  12. V. Tioukov, A. Alexandrov, C. Bozza, L. Consiglio, N. D’Ambrosio, G. De Lellis, C. De Sio, F. Giudicepietro, G. Macedonio, S. Miyamoto, R. Nishiyama, M. Orazi, R. Peluso, A. Sheshukov, C. Sirignano, S. M. Stellacci, P. Strolin, and H. K. M. Tanaka, “First muography of Stromboli volcano,” Sci. Rep. 9, 6695 (2019).

    Article  Google Scholar 

  13. S. Kedar, H. K. M. Tanaka, C. J. Naudet, C. E. Jones, J. P. Plaut, and F. H. Webb, “Muon radiography for exploration of Mars geology,” Geosci. Instrum. Method. Data Syst. 2, 157–164 (2013).

    Article  Google Scholar 

  14. L. W. Alvarez, J. A. Anderson, F. El Bedwei, J. Burkhard, A. Fakhry, A. Girgis, A. Goneid, F. Hassan, D. Iverson, G. Lynch, Z. Miligy, A. H. Moussa, M. Sharkawi, and L. Yazolino, “Search for hidden chambers in the pyramids,” Science 167, 832–839 (1970).

    Article  Google Scholar 

  15. K. Morishima, M. Kuno, A. Nishio, N. Kitagawa, Y. Manabe, M. Moto, F. Takasaki, H. Fujii, K. Satoh, H. Kodama, K. Hayashi, Sh. Odaka, S. Procureur, D. Attié, S. Bouteille, D. Calvet, Ch. Filosa, P. Magnier, I. Mandjavidze, M. Riallot, B. Marini, P. Gable, Y. Date, M. Sugiura, Y. Elshayeb, T. Elnady, M. Ezzy, E. Guerriero, V. Steiger, N. Serikoff, J.-B. Mouret, B. Charlès, H. Helal, and M. Tayoubi, “Discovery of a big void in Khufu’s pyramid by observation of cosmic-ray muons,” Nature 552, 386–390 (2017).

    Article  Google Scholar 

  16. G. Saracino, L. Amato, F. Ambrosino, G. Antonucci, L. Bonechi, L. Cimmino, L. Consiglio, R. D. Alessandro, E. De Luzio, G. Minin, P. Noli, L. Scognamiglio, P. Strolin, and A. Varriale, “Imaging of underground cavities with cosmic-ray muons from observations at Mt. Echia (Naples),” Sci. Rep 7, 1181 (2017).

    Article  Google Scholar 

  17. W. B. Gilboy, P. M. Jenneson, S. J. R. Simons, S. J. Stanley, and D. Rhodes, “Muon radiography of large industrial structures,” Nucl. Instrum. Methods Phys. Res., Sect. B 263, 317–319 (2007).

    Google Scholar 

  18. J. M. Durham, E. Guardincerri, C. L. Morris, J. Bacon, J. Fabritius, S. Fellows, D. Poulson, K. Plaud-Ramos, and J. Renshaw, “Tests of cosmic ray radiography for power industry applications,” AIP Adv. 5, 067111 (2015).

    Article  Google Scholar 

  19. D. A. Bryman, J. Bueno, and J. Jansen, “Blind test of muon geotomography for mineral exploration,” ASEG Ext. Abst. 2015, 1–3 (2015).

    Google Scholar 

  20. A. Bonneville, R. Kouzes, J. Yamaoka, A. Lintereur, J. Flygare, G. S. Varner, I. Mostafanezhad, E. Guardincerri, C. Rowe, and R. Mellors, “Borehole muography of subsurface reservoirs,” Philos. Trans. R. Soc. A 377, 20180060 (2019).

    Article  Google Scholar 

  21. Z.-X. Zhang, T. Enqvist, M. Holma, and P. Kuusiniemi, “Muography and its potential applications to mining and rock engineering,” Rock Mech. Rock Eng. 53, 4893–4907 (2020).

    Article  Google Scholar 

  22. K. Borozdin, S. Greene, Z. Lukić, E. Milner, H. Miyadera, C. Morris, and J. Perry, “Cosmic ray radiography of the damaged cores of the Fukushima reactors,” Phys. Rev. Lett. 109, 152501 (2012).

    Article  Google Scholar 

  23. K. Morishima, “Cosmic-ray imaging of Fukushima Daiichi nuclear power plant,” J. Soc. Photograph. Sci. Tech. Jpn 79, 42–47 (2016).

    Google Scholar 

  24. H. Fujii, K. Hara, K. Hayashi, H. Kakuno, H. Kodama, K. Nagamine, K. Sato, Sh.-H. Kim, A. Suzuki, T. Sumiyoshi, K. Takahashi, F. Takasaki, Sh. Tanaka, and S. Yamashita, “Investigation of the Unit-1 nuclear reactor of Fukushima Daiichi by cosmic muon radiography,” Prog. Theor. Exp. Phys. 2020, C02 (2020).

    Article  Google Scholar 

  25. H. Fujii, K. Hara, K. Hayashi, H. Kakuno, H. Kodama, K. Nagamine, K. Sato, Sh.-H. Kim, A. Suzuki, T. Sumiyoshi, K. Takahashi, F. Takasaki, Sh. Tanaka, and S. Yamashita, “Investigation of the status of Unit 2 Nuclear Reactor of the Fukushima Daiichi by cosmic muon radiography,” Prog. Theor. Exp. Phys. 2021, C01 (2021).

    Article  Google Scholar 

  26. K. Nagamine, T. Fujimaki, T. Hashimoto, M. Tsukamoto, S. Kubota, T. Hirai, A. Manabe, Y. Tomisawa, A. D. Pant, and E. Torikai, “Cosmic-ray muon spin rotation in Fe and industrial application,” J. Phys.: Conf. Ser. 551, 012064 (2014).

    Google Scholar 

  27. L. Cimmino, G. Baccani, P. Noli, L. Amato, F. Ambrosino, L. Bonechi, M. Bongi, V. Ciulli, R. D’Alessandro, M. D’Errico, S. Gonzi, B. Melon, G. Minin, G. Saracino, L. Scognamiglio, P. Strolin, and L. Viliani, “3D muography for the search of hidden cavities,” Sci. Rep. 9, 2974 (2019).

    Article  Google Scholar 

  28. L. G. Dedenko, A. K. Managadze, T. M. Roganova, A. V. Bagulya, M. S. Vladimirov, S. G. Zemskova, N. S. Konovalova, N. G. Polukhina, N. I. Starkov, M. M. Chernyavskiy, and V. M. Grachev, “Prospects of the study of geological structures by muon radiography based on emulsion track detectors,” Bull. Lebedev Phys. Inst. 41, 235–241 (2014).

    Article  Google Scholar 

  29. A. B. Aleksandrov, A. V. Bagulya, M. M. Chernyavsky, N. S. Konovalova, A. K. Managadze, O. I. Orurk, N. G. Polukhina, T. M. Roganova, T. V. Shchedrina, N. I. Starkov, V. E. Tioukov, M. S. Vladymyrov, and S. G. Zemskova, “Muon radiography in Russia with emulsion technique. First experiments future perspectives,” AIP Conf. Proc. 1702, 110002 (2015).

    Article  Google Scholar 

  30. S. A. Baklagin, V. M. Grachev, N. S. Konovalova, A. A. Malovichko, A. K. Managadze, N. G. Polukhina, T. M. Roganova, N. I. Starkov, V. E. Tyukov, and T. V. Shchedrina, “Large industrial and natural objects investigation by the muon radiography on the basis of track detectors,” IJIRSET 5, 0507027 (2016).

    Google Scholar 

  31. V. A. Alekseev, A. B. Alexandrov, A. V. Bagulya, M. M. Chernyavskiy, L. A. Goncharova, S. A. Gorbunov, G. V. Kalinina, N. S. Konovalova, N. M. Oka-tyeva, T. A. Pavlova, N. G. Polukhina, T. V. Shchedrina, N. I. Starkov, V. E. Tioukov, M. S. Vladymirov, and A. E. Volkov, “Current status and prospects of nuclear physics research based on tracking techniques,” J. Phys.: Conf. Ser. 798, 012207 (2017).

    Google Scholar 

  32. A. B. Alexandrov, M. M. Chernyavsky, V. I. Galkin, L. A. Goncharova, V. M. Grachev, A. S. Konovalov, N. S. Konovalova, P. S. Korolev, A. A. Larionov, A. K. Managadze, I. A. Melnichenko, N. M. Okateva, N. G. Polukhina, T. M. Roganova, Zh. T. Sadykov, T. V. Shchedrina, V. I. Shevchenko, N. I. Starkov, E. N. Starkova, V. E. Tyukov, and S. G. Vasina, “Muography of large natural and industrial objects,” Phys. At. Nucl. 84, 20–26 (2021).

    Article  Google Scholar 

  33. A. Ariga, T. Ariga, G. De Lellis, A. Ereditato, and K. Niwa, in Nuclear emulsions, Ed. by C. Fabjan and H. Schopper, Part. Phys. Ref. Library (Springer, Cham.), 383–438 (2020).

  34. A. Abiev, A. Bagulya, M. Chernyavsky, A. Dashkina, A. Dimitrienko, A. Gadjiev, M. Gadjiev, V. Galkin, A. Gippius, L. Goncharova, V. Grachev, N. Konovalova, A. Managadze, N. Okateva, N. Polukhina, T. Roganova, T. Shchedrina, N. Starkov, A. Teymurov, V. Tioukov, S. Vasina, and P. Zarubin, “Muon radiography method for non-invasive probing an archaeological site in the Naryn-Kala citadel,” Appl. Sci. 9, 2040 (2019).

    Article  Google Scholar 

  35. A. K. Abiev, A. V. Bagulya, M. M. Chernyavsky, A. A. Dimitrienko, A. A. Gadjiev, M. S. Gadjiev, V. I. Galkin, A. A. Gippius, L. A. Goncharova, V. M. Grachev, A. S. Konovalov, N. S. Konovalova, A. K. Managadze, N. M. Okateva, N. G. Polukhina, T. M. Roganova, T. V. Shchedrina, N. I. Starkov, A. A. Teymurov, V. E. Tioukov, S. G. Vasina, and P. I. Zarubin, “Muography of large natural and industrial objects,” Phys. At. Nucl. 82, 804–808 (2019).

    Article  Google Scholar 

  36. S. G. Zemskova and N. I. Starkov, “Methodical notes on the use of cosmic muons in radiography,” Bull. Lebedev Phys. Inst. 42, 37–42 (2015).

    Article  Google Scholar 

  37. S. G. Zemskova and N. I. Starkov, “Results of the model experiment on cosmic muon radiography of a mountain,” Bull. Lebedev Phys. Inst. 42, 157–164 (2015).

    Article  Google Scholar 

  38. M. Kremer, M. Boezio, M. L. Ambriola, G. Barbiellini, and S. Bartalucci, “Measurements of ground-level muons at two geomagnetic locations,” Phys. Rev. Lett. 83, 4241–4244 (1999).

    Article  Google Scholar 

  39. D. E. Groom, N. V. Mokhov, and S. I. Striganov, “Muon stopping power and range tables 10 MeV–100 TeV,” Atom. Data Nucl. Data Tables 78, 183–356 (2001).

    Article  Google Scholar 

  40. A. Alexandrov, N. Konovalova, N. Okateva, N. Polukhina, N. Starkov, and T. Shchedrina, “Upgrade and new applications of the automated high-tech scanning facility PAVICOM for data processing of track detectors,” Measurement 187, 110244 (2022).

    Article  Google Scholar 

  41. V. Tioukov, I. Kreslo, Y. Petukhov, and G. Sirri, “The FEDRA - framework for emulsion data reconstruction and analysis in the OPERA experiment,” Nucl. Instrum. Methods Phys. Res., Sect. A 559, 103–105 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Polukhina.

Additional information

Translated by M. Shmatikov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandrov, A.B., Vasina, S.G., Galkin, V.I. et al. A Noninvasive Muonography-Based Method for Exploration of Cultural Heritage Objects. Phys. Part. Nuclei 53, 1146–1175 (2022). https://doi.org/10.1134/S1063779622060028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779622060028

Navigation