Skip to main content
Log in

Investigation of \({}^{{70,72,74,76}}\)Ge and \({}^{{84,86,88}}\)Sr in the Cluster Model

  • NUCLEI / Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The present work shows our academic investigation of the role of the binary cluster model in probing the states of even–even mid-mass stable isotopes like \({}^{70,72,74,76}\)Ge and \({}^{84,86,88}\)Sr. The even-\(Z\) stable nuclei are significant in number. Although light even-\(Z\) stable isotopes have been studied extensively in terms of cluster models, there are fewer studies of mid-mass stable isotopes. Thus, we applied a cluster model to characterize some static properties of \({}^{70,72,74,76}\)Ge and \({}^{84,86,88}\)Sr. The eigenvalues and wave functions have been calculated for even–even stable nuclei in the germanium and strontium isotopic chains by analytically solving the time-independent Schrödinger equation involving a phenomenological potential. We have shown that the available experimental data of the charge radius and ground state energy can be well described by assuming a binary structure of \(\alpha\) cluster and a core and using an analytical solution. We applied Zn and Kr isotopes as cores of \({}^{70,72,74,76}\)Ge and \({}^{84,86,88}\)Sr, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

REFERENCES

  1. M. Mousavi and M. R. Shojaei, Chin. J. Phys. 54, 750 (2016). https://doi.org/10.1016/j.cjph.2016.07.006

    Article  Google Scholar 

  2. Z. Binesh, M. R. Shojaei, and B. Azadegan, Can. J. Phys. 98, 28 (2020). https://doi.org/10.1139/cjp-2018-0461

    Article  ADS  Google Scholar 

  3. M. Freer, H. Horiuchi, Yo. Kanada-En’yo, D. Lee, and N. G. Meißner, Rev. Mod. Phys. 90, 35004 (2018). https://doi.org/10.1103/revmodphys.90.035004

    Article  Google Scholar 

  4. M. Freer and A. C. Merchant, J. Phys. G: Nucl. Part. Phys. 23, 261 (1997). https://doi.org/10.1088/0954-3899/23/3/002

    Article  ADS  Google Scholar 

  5. J. A. Wheeler, Phys. Rev. 52, 1083 (1937). https://doi.org/10.1103/physrev.52.1083

    Article  ADS  Google Scholar 

  6. H. Margenau, Phys. Rev. 59, 37 (1941). https://doi.org/10.1103/physrev.59.37

    Article  ADS  Google Scholar 

  7. D. Brink, in Proc. Int. School of Physics Enrico Fermi, Course 36 (Varenna, Italy, 1965).

  8. P. Descouvemont and M. Dufour, in Clusters in Nuclei, Vol. 2, Ed. by C. Beck, Lecture Notes in Physics, Vol. 848 (Springer, Berlin, 2012), pp. 1–66. https://doi.org/10.1007/978-3-642-24707-1_1

    Book  Google Scholar 

  9. Y. Funaki, H. Horiuchi, and A. Tohsaki, Prog. Part. Nucl. Phys. 82, 78 (2015). https://doi.org/10.1016/j.ppnp.2015.01.001

    Article  ADS  Google Scholar 

  10. M. Freer, Scholarpedia 5, 9652 (2010). https://doi.org/10.4249/scholarpedia.9652

    Article  ADS  Google Scholar 

  11. N. Roshanbakht and M. Shojaei, Eur. Phys. J. A 54, 134 (2018). https://doi.org/10.1140/epja/i2018-12565-7

    Article  ADS  Google Scholar 

  12. R. A. Baldock, B. Buck, and J. A. Rubio, Nucl. Phys. A 426, 222 (1984). https://doi.org/10.1016/0375-9474(84)90106-4

    Article  ADS  Google Scholar 

  13. M. A. Souza and H. Miyake, Phys. Rev. C 104, 064301 (2021). https://doi.org/10.1103/PhysRevC.104.064301

  14. M. A. Souza and H. Miyake, Phys. Rev. C 91, 034320 (2015). https://doi.org/10.1103/PhysRevC.91.034320

  15. M. A. Souza, H. Miyake, T. Borello-Lewin, C. A. da Rocha, and C. Frajuca, J. Phys.: Conf. Ser. 1291, 012037 (2019). https://doi.org/10.1088/1742-6596/1291/1/012037

  16. B. Buck, A. C. Merchant, and S. M. Perez, Phys. Rev. C 51, 559 (1995). https://doi.org/10.1103/physrevc.51.559

    Article  ADS  Google Scholar 

  17. P. Schuck, Ya. Funaki, H. Horiuchi, G. Röpke, A. Tohsaki, and T. Yamada, Phys. Scr. 91, 123001 (2016). https://doi.org/10.1088/0031-8949/91/12/123001

  18. C. Beck, in New Horizons in Fundamental Physics, Ed. by S. Schramm and M. Schäfer, FIAS Interdisciplinary Science Series (Springer, Cham, 2015), pp. 103–114. https://doi.org/10.1007/978-3-319-44165-8_8

    Book  Google Scholar 

  19. M. Freer, Rep. Prog. Phys. 70, 2149 (2007). https://doi.org/10.1088/0034-4885/70/12/r03

    Article  ADS  Google Scholar 

  20. N. Zoghi-Foumani, M. R. Shojaei, and A. A. Rajabi, Pramana 88, 1 (2017). https://doi.org/10.1007/s12043-017-1379-y

    Article  Google Scholar 

  21. M. F. Manning and N. Rosen, Phys. Rev. 44, 951 (1933).

    Article  Google Scholar 

  22. M. Mousavi and M. R. Shojaei, Commun. Theor. Phys. 66, 483 (2016). https://doi.org/10.1088/0253-6102/66/5/483

    Article  ADS  Google Scholar 

  23. P.-Q. Wang, L.-H. Zhang, Ch.-Sh. Jia, and J.-Y. Liu, J. Mol. Spectrosc. 274, 5 (2012). https://doi.org/10.1016/j.jms.2012.03.005

    Article  ADS  Google Scholar 

  24. Ch.-Sh. Jia, T. Chen, and S. He, Phys. Lett. A 377, 682 (2013). https://doi.org/10.1016/j.physleta.2013.01.016

    Article  ADS  MathSciNet  Google Scholar 

  25. N. Roshanbakht and M. R. Shojaei, Commun. Theor. Phys. 70, 067 (2018). https://doi.org/10.1088/0253-6102/70/1/67

  26. N. Malekinezhad and M. R. Shojaei, Int. J. Mod. Phys. E 31, 2250044 (2022). https://doi.org/10.1142/s0218301322500446

  27. B. Buck and A. C. Merchant, Phys. Rev. C 39, 2097 (1989). https://doi.org/10.1103/physrevc.39.2097

    Article  ADS  Google Scholar 

  28. S. Ohkubo, Phys. Rev. C 39, 1186 (1989). https://doi.org/10.1103/physrevc.39.1186

    Article  ADS  Google Scholar 

  29. D. Bai, Z. Ren, and G. Röpke, Phys. Rev. C 99, 34305 (2019). https://doi.org/10.1103/physrevc.99.034305

    Article  ADS  Google Scholar 

  30. A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics: A Unified Introduction with Applications (Birkhäuser, Boston, 1988). https://doi.org/10.1007/978-1-4757-1595-8

    Book  Google Scholar 

  31. M. R. Shojaei and N. Roshanbakht, Chin. J. Phys. 53, 120301 (2015). https://doi.org/10.6122/CJP.20150831C

  32. C. Tezcan and R. Sever, Int. J. Theor. Phys. 48, 337 (2009). https://doi.org/10.1007/s10773-008-9806-y

    Article  Google Scholar 

  33. S. Aslanzadeh, M. R. Shojaei, and A. A. Mowlavi, Can. J. Phys. 98, 148 (2020). https://doi.org/10.1139/cjp-2018-0843

    Article  ADS  Google Scholar 

  34. F. Tajik, Z. Sharifi, M. Eshghi, M. Hamzavi, M. Bigdeli, and S. M. Ikhdair, Phys. A: Stat. Mech. its Appl. 535, 122497 (2019). https://doi.org/10.1016/j.physa.2019.122497

  35. C. Berkdemir, in Theoretical Concepts of Quantum Mechanics (InTechOpen, London, 2012), p. 225. https://doi.org/10.5772/33510

  36. M. Mousavi and M. R. Shojaei, Mod. Phys. Lett. A 34, 1950073 (2019). https://doi.org/https://doi.org/10.1142/s0217732319500731

  37. I. Angeli and K. P. Marinova, At. Data Nucl. Data Tables 99, 69 (2013). https://www-nds.iaea.org/radii/.

    Article  ADS  Google Scholar 

  38. V. S. Semenishchev and A. V. Voronina, in Strontium Contamination in the Environment, Ed. by P. Pathak and D. Gupta, The Handbook of Environmental Chemistry, Vol. 88 (Springer, Cham, 2020), pp. 25-42. https://doi.org/10.1007/978-3-030-15314-4_2

  39. S. Mirzadeh and R. M. Lambrecht, J. Radioanalytical Nucl. Chem. Articles 202, 7 (1996). https://doi.org/10.1007/bf02037941

    Article  Google Scholar 

  40. G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A 729, 337 (2003). https://doi.org/10.1016/j.nuclphysa.2003.11.003

    Article  ADS  Google Scholar 

  41. Feizi, Hamed, Ali Akbar Rajabi, and Mohammad Reza Shojaei, Acta Physica Polonica B 42 (10), 2143 (2011).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Shojaei.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nia, M.M., Shojaei, M.R. Investigation of \({}^{{70,72,74,76}}\)Ge and \({}^{{84,86,88}}\)Sr in the Cluster Model. Phys. Atom. Nuclei 87, 19–24 (2024). https://doi.org/10.1134/S1063778824020145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778824020145

Navigation