Skip to main content
Log in

The Thermonuclear Rate of \({}^{\mathbf{9}}\mathbf{Be}\)(\(\mathbf{p}\), \(\boldsymbol{\gamma}\))\({}^{\mathbf{10}}\)B Reaction by Using the Modified Potential Model*

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The proton capture reaction serves as a valuable tool for exploring the nuclear structure. Specifically, in the p-shell, the radiative proton capture on \({}^{9}\)Be plays a significant role in the nucleosynthesis of light elements. We have investigated the reaction \({}^{9}\textrm{Be}(\textrm{p},\gamma)^{10}\)B using the modified potential model. Within this framework, we have examined various electric and magnetic transitions associated with this reaction and have computed the rates for both direct capture and resonance capture. The reaction rate of \({}^{9}\textrm{Be}(\textrm{p},\gamma)^{10}\)B is evaluated by employing the computed total cross-sections across a temperature range of 0.006 to 1 T9. A comparative analysis is conducted between the calculated rate and the data obtained from NACRE II. The astrophysical S factor and reaction rate are expressed analytically, accompanied by an estimation of the influence of low-lying resonances on the reaction rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

REFERENCES

  1. M. Abramowitz, I. A. Stegun, et al., Handbook of Mathematical Functions (Dover, New York, 1968), Vol. 10.

    Google Scholar 

  2. E. G. Adelberger, A. García, R. H. Robertson, K. Snover, A. Balantekin, K. Heeger, M. Ramsey-Musolf, D. Bemmerer, A. Junghans, C. Bertulani, et al., Rev. Mod. Phys. 83, 195 (2011).

    Article  ADS  Google Scholar 

  3. C. Angulo, M. Arnould, M. Rayet, P. Descouvemont, D. Baye, C. Leclercq-Willain, A. Coc, S. Barhoumi, P. Aguer, C. Rolfs, et al., Nucl. Phys. A 656, 3 (1999).

    Article  ADS  Google Scholar 

  4. J. N. Bahcall, M. Pinsonneault, S. Basu, and J. Christensen-Dalsgaard, Phys. Rev. Lett. 78, 171 (1997).

    Article  ADS  Google Scholar 

  5. J. N. Bahcall, A. M. Serenelli, and S. Basu, Astrophys. J. 621, 85 (2005).

    Article  ADS  Google Scholar 

  6. C. Bertulani, Comput. Phys. Commun. 156, 123 (2003).

    Article  ADS  Google Scholar 

  7. C. R. Brune and B. Davids, Ann. Rev. Nucl. Part. Sci. 65, 87 (2015).

    Article  ADS  Google Scholar 

  8. G. R. Caughlan, W. A. Fowler, M. Harris, and B. Zimmerman, At. Data Nucl. Data Tables 40, 283 (1988).

    Article  ADS  Google Scholar 

  9. S. Dubovichenko and A. Dzhazairov-Kakhramanov, Int. J. Mod. Phys. E 26, 1630009 (2017).

  10. S. Dubovichenko, N. Burkova, A. Dzhazairov-Kakhramanov, and A. Tkachenko, Nucl. Phys. A 983, 175 (2019).

    Article  ADS  Google Scholar 

  11. W. A. Fowler, Rev. Mod. Phys. 56, 149 (1984).

    Article  ADS  Google Scholar 

  12. W. A. Fowler, G. R. Caughlan, and B. A. Zimmerman, Ann. Rev. Astron. Astrophys. 5, 525 (1967).

    Article  ADS  Google Scholar 

  13. W. A. Fowler, G. R. Caughlan, and B. A. Zimmerman, Ann. Rev. Astron. Astrophys. 13, 69 (1975).

    Article  ADS  Google Scholar 

  14. A. Kabir and J.-U. Nabi, Nucl. Phys. A 1007, 122118 (2021).

  15. B. Pritychenko et al., At. Data Nucl. Data Tables 96, 645 (2010).

    Article  ADS  Google Scholar 

  16. C. E. Rolfs and W. S. Rodney, Cauldrons in the Cosmos: Nuclear Astrophysics (Univ. Chicago Press, Chicago, 1988).

  17. A. Sattarov, A. Mukhamedzhanov, A. Azhari, C. A. Gagliardi, L. Trache, and R. E. Tribble, Phys. Rev. C 60, 035801 (1999).

  18. E. Tursunov, S. Turakulov, A. Kadyrov, and L. Blokhintsev, Phys. Rev. C 104, 045806 (2021).

  19. M. Wiescher, F. Káppeler, and K. Langanke, Ann. Rev. Astron. Astrophys. 50, 165 (2012).

    Article  ADS  Google Scholar 

  20. Y. a. Xu, K. Takahashi, S. Goriely, M. Arnould, M. Ohta, and H. Utsunomiya, Nucl. Phys. A 918, 61 (2013).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to express our sincere gratitude to all the individuals and organizations who have contributed to the publication of this research paper. The first author of the manuscript Leila Asgari unfortunately died of cardiac arrest. She was a Ph.D. student in theoretical nuclear physics at Arak University. May her soul rest in peace. We will never forget her discipline, passion, and dedication to duty.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Sadeghi.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The text was submitted by the authors in English

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgari, L., Sadeghi, H. & Khalili, H. The Thermonuclear Rate of \({}^{\mathbf{9}}\mathbf{Be}\)(\(\mathbf{p}\), \(\boldsymbol{\gamma}\))\({}^{\mathbf{10}}\)B Reaction by Using the Modified Potential Model*. Astron. Lett. 49, 767–776 (2023). https://doi.org/10.1134/S1063773723110117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773723110117

Keywords:

Navigation