Skip to main content
Log in

Single X-ray Bursts and the Model of a Spreading Layer of Accreting Matter over the Neutron Star Surface

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The excess of the rate of type I X-ray bursts over that expected when the matter fallen between bursts completely burns out in a thermonuclear explosion which is observed in bursters with a high persistent luminosity (4 × 1036LX ≲ 2 × 1037 erg s−1) is explained in terms of the model of a spreading layer of matter coming from the accretion disk over the neutron star surface. In this model the accreting matter settles to the stellar surface mainly in two high-latitude ring zones. Despite the subsequent spreading of matter over the entire star, its surface density in these zones turns out to be higher than the average one by 2–3 orders of magnitude, which determines the predominant ignition probability. The multiple events whereby the flame after the thermonuclear explosion in one ring zone (initial burst) propagates through less densematter to another zone and initiates a second explosion in it (recurrent burst) make a certain contribution to the observed excess of the burst rate. However, the localized explosions of matter in these zones, after which the burning in the zone rapidly dies out without affecting other zones, make a noticeably larger contribution to the excess of the burst rate over the expected one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Bildsten, Astrophys. J. 438, 852 (1995).

    Article  ADS  Google Scholar 

  2. L. Bildsten, in Proceedings of International Conference on theMany Faces of Neutron Stars, Ed. by A. Alpar, L. Buccheri, and J. van Paradijs, ASIC 515, 419 (1998).

    Article  Google Scholar 

  3. L. Bildsten, in Proceedings of 10th International Astrophysics Conference on Cosmic Explosions, AIP Conf. 522, 359 (2000).

    Article  ADS  Google Scholar 

  4. I. V. Chelovekov and S. A. Grebenev Astron. Lett. 37, 597 (2011).

    Article  ADS  Google Scholar 

  5. I. V. Chelovekov, S. A. Grebenev, and R. A. Sunyaev, Astron. Lett. 32, 456 (2006).

    Article  ADS  Google Scholar 

  6. I. V. Chelovekov, S. A. Grebenev, I. A. Mereminskiy, and A. V. Prosvetov, Astron. Lett. 43, 781 (2017).

    Article  ADS  Google Scholar 

  7. R. L. Cooper and R. Narayan, Astrophys. J. 657, L29 (2007).

    Article  ADS  Google Scholar 

  8. A. Cumming and L. Bildsten, Astrophys. J. 559, L127 (2001).

    Article  ADS  Google Scholar 

  9. E. Ergma, Sov. Sci. Rev., Sec. E: Astrophys. Space Phys. Rev. 2, 163 (1983).

    ADS  Google Scholar 

  10. E. V. Ergma and A. V. Tutukov, Astron. Astrophys. 84, 123 (1980).

    ADS  Google Scholar 

  11. B. A. Fryxell and S. E. Woosley, Astrophys. J. 261, 332 (1982).

    Article  ADS  Google Scholar 

  12. M. Y. Fuijmoto, T. Hanawa, and S. Miyaji, Astrophys. J. 246, 267 (1981).

    Article  ADS  Google Scholar 

  13. D. K. Galloway, M. P. Muno, J. M. Hartman, D. Psaltis, and D. Chakrabarty, Astrophys. J. Suppl. Ser. 179, 360 (2008).

    Article  ADS  Google Scholar 

  14. S. A. Grebenev, I. V. Chelovekov, Astron. Lett. 43, 583 (2017)].

    Article  ADS  Google Scholar 

  15. T. Hanawa and M. Y. Fujimoto, Publ. Astron. Soc. Jpn. 34, 495 (1982).

    ADS  Google Scholar 

  16. N. A. Inogamov and R. A. Sunyaev, Astron. Lett. 25, 269 (1999).

    ADS  Google Scholar 

  17. N. A. Inogamov and R. A. Sunyaev, Astron. Lett. 36, 848 (2010).

    Article  ADS  Google Scholar 

  18. J. J. M. in’t Zand, R. Cornelisse, and A. Cumming, Astron. Astrophys. 426, 257 (2004).

    Article  ADS  Google Scholar 

  19. L. Keek, D. K. Galloway, J. J. M. in’t Zand, and A. Heger, Astrophys. J. 718, 292 (2010).

    Article  ADS  Google Scholar 

  20. W. H. G. Lewin, J. van Paradijs, and R. E. Taam, Space Sci. Rev. 62, 223 (1993).

    Article  ADS  Google Scholar 

  21. T. Nozakura, S. Ikeuchi, and M. Y. Fujimoto, Astrophys. J. 286, 221 (1984).

    Article  ADS  Google Scholar 

  22. A. Spitkovsky, Y. Levin, and G. Ushomirsky, Astrophys. J. 566, 1018 (2002).

    Article  ADS  Google Scholar 

  23. T. Strohmayer and L. Bildsten, Compact Stellar X-ray Sources, Vol. 39 of Cambridge Astrophysics Series, Ed. by W. Lewin and M. van der Klis (Cambridge Univ. Press, Cambridge, 2006), p. 113; astroph/0301544.

  24. A. V. Tutukov and E. V. Ergma, Sov. Astron. Lett. 5, 20 (1979).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Grebenev.

Additional information

Original Russian Text © S.A. Grebenev, I.V. Chelovekov, 2018, published in Pis’ma v Astronomicheskii Zhurnal, 2018, Vol. 44, No. 12, pp. 845–850.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grebenev, S.A., Chelovekov, I.V. Single X-ray Bursts and the Model of a Spreading Layer of Accreting Matter over the Neutron Star Surface. Astron. Lett. 44, 777–781 (2018). https://doi.org/10.1134/S1063773718120083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773718120083

Keywords

Navigation