Skip to main content
Log in

Observational evidence for AGN fueling: I. The case of NGC 6104—Merging with a companion

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We investigate in detail the kinematics and morphology of the Seyfert galaxy NGC 6104 in order to identify the mechanism of gas transportation to the active galactic nucleus (AGN). Our observational data were obtained at the 6-m Special Astrophysical Observatory telescope with the MPFS integral-field spectrograph and the SCORPIO universal device in three modes: direct imaging, a scanning Fabry—Perot interferometer, and long-slit spectroscopy. Images from the HST archive were invoked to study the structure of the circumnuclear region. An analysis of deep images has shown for the first time that NGC 6104 is in the phase of active merging with a companion galaxy. We have been able to study the detailed picture of ionized gas motions up to galactocentric distances of 14 kpc and to construct the stellar velocity field for the inner region. The radial gas motions toward the AGN along the central bar play a significant role at galactocentric distances of 1–5 kpc. In addition, we have detected an outflow of ionized gas from the nucleus that presumably resulted from the intrusion of a radio jet into the ambient interstellar medium. Using diagnostic diagrams, we estimate the contributions from the AGN and star formation to the galactic gas ionization. We estimate the bar pattern speed by the Tremaine-Weinberg method and show that the inner ring observed in the galaxy’s images has a resonant nature. Two possible ring formation scenarios, before and during the interaction with a companion, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Afanasiev, S. N. Dodonov, and A. V. Moiseev, Stellar Dynamics: From Classic to Modern, Ed. by L. P. Osipkov and I. I. Nikiforov (St. Petersburg, 2001), p. 103.

  2. V. L. Afanasiev and A. V. Moiseev, Pis’ma Astron. Zh. 31, 214 (2005) [Astron. Lett. 31, 194 (2005)]; astroph/0502095.

    Google Scholar 

  3. J. A. L. Aguerri, V. P. Debattista, and E. M. Corsini, Mon. Not. R. Astron. Soc. 338, 465 (2003).

    Article  ADS  Google Scholar 

  4. R. Buta, Astrophys. J., Suppl. Ser. 61, 609 (1986).

    Article  ADS  Google Scholar 

  5. R. Buta and F. Combes, Fundam. Cosm. Phys. 17, 95 (1996).

    ADS  Google Scholar 

  6. A. Capetti, D. J. Axon, F. D. Macchetto, et al., Astrophys. J. 516, 187 (1999).

    Article  ADS  Google Scholar 

  7. S. Ciroi, V. Afanasiev, A. Moiseev, et al., Mon. Not. R. Astron. Soc. 360, 253 (2005).

    Article  ADS  Google Scholar 

  8. F. Combes, Advanced Lectures on the Starburst-AGN Connection (World Sci., Singapore, 2001), p. 223.

    Google Scholar 

  9. F. Combes and M. Gerin, Astron. Astrophys. 150, 327 (1985).

    ADS  Google Scholar 

  10. O. Dahari, Astron. J. 90, 1772 (1985).

    Article  ADS  Google Scholar 

  11. V. P. Debattista, Mon. Not. R. Astron. Soc. 342, 1194 (2003).

    Article  ADS  Google Scholar 

  12. S. Garcia-Burillo, F. Combes, E. Schinnerer, et al., Astron. Astrophys. 441, 1011 (2005).

    Article  ADS  Google Scholar 

  13. P. Hall and G. Richards, Publ. Astron. Soc. Pac. 116, 593 (2004).

    Article  ADS  Google Scholar 

  14. O. Hernandez, Wozniak, C. Carignan, et al., Astrophys. J. 632, 253 (2005).

    Article  ADS  Google Scholar 

  15. L. Ho and C. Peng, Astrophys. J. 555, 650 (2001).

    Article  ADS  Google Scholar 

  16. L. Jimenez-Benito, A. Diaz, R. Terlevich, and E. Terlevich, Mon. Not. R. Astron. Soc. 317, 907 (2000).

    Article  ADS  Google Scholar 

  17. S. Jogee, J. D. P. Kenney, and B. J. Smith, Astrophys. J. 526, 665 (1999).

    Article  ADS  Google Scholar 

  18. G. Kauffmann, S. White, T. Heckman, et al., Mon. Not. R. Astron. Soc. 353, 713 (2004).

    Article  ADS  Google Scholar 

  19. R. Kennicutt, Ann. Rev. Astron. Astrophys. 36, 189 (1998).

    Article  ADS  Google Scholar 

  20. J. Knapen, Astrophys. Space Sci. 295, 85 (2005).

    Article  ADS  Google Scholar 

  21. J. Kormendy, Ann. Rev. Astron. Astrophys. 27, 235 (1989).

    Article  ADS  Google Scholar 

  22. S. Laine, I. Shlosman, J. Knapen, and R. Peletier, Astrophys. J. 567, 97 (2002).

    Article  ADS  Google Scholar 

  23. M. Malkan, V. Gorjian, and R. Tam, Astrophys. J., Suppl. Ser. 117, 25 (1998).

    Article  ADS  Google Scholar 

  24. P. Martini, The Interplay among Black Holes, Stars and ISM in Galactic Nuclei, Ed. by L. Storchi-Bergmann et al. (Cambridge Univ. Press, Cambridge, 2004), p. 222.

    Google Scholar 

  25. P. Martini, M. Regan, J. Mulchaey, and R. Pogge, Astrophys. J. 589, 774 (2003).

    Article  ADS  Google Scholar 

  26. A. V. Moiseev, Bull. Spec. Astrophys. Obs. 51, 11 (2001); astro-ph/0111219.

    ADS  Google Scholar 

  27. A. V. Moiseev, Bull. Spec. Astrophys. Obs. 54, 74 (2002a); astro-ph/0211104.

    ADS  Google Scholar 

  28. A. V. Moiseev, Pis’ma Astron. Zh. 28, 840 (2002b) [Astron. Lett. 28, 755 (2002b)].

    Google Scholar 

  29. A. V. Moiseev, J. R. Valdés, and V. H. Chavushyan, Astron. Astrophys. 421, 433 (2004).

    Article  ADS  Google Scholar 

  30. H. Mouri and Y. Taniguchi, Astrophys. J. 565, 786 (2002).

    Article  ADS  Google Scholar 

  31. I. I. Pasha, Pis’ma Astron. Zh. 11, 3 (1985) [Sov. Astron. Lett. 11, 1 (1985)].

    ADS  Google Scholar 

  32. P. Rafanelli, M. Violato, and A. Baruffolo, Astron. J. 109, 1546 (1995).

    Article  ADS  Google Scholar 

  33. R. Rand and J. Wallin, Astrophys. J. 614, 142 (2004).

    Article  ADS  Google Scholar 

  34. M. W. Regan, K. Sheth, and S. N. Vogel, Astrophys. J. 482, 143L (1997).

    Article  ADS  Google Scholar 

  35. M. de Robertis, H. Yee, and K. Hayhoe, Astrophys. J. 496, 93 (1998).

    Article  ADS  Google Scholar 

  36. H. Schmitt, Astron. J. 122, 2243 (2001).

    Article  ADS  Google Scholar 

  37. M. P. Schwarz, Proc. Astron. Soc. Aust. 6, 202 (1984).

    ADS  Google Scholar 

  38. F. Schweizer and P. Seitzer, Astrophys. J. 326, 88 (1988).

    Article  ADS  Google Scholar 

  39. F. Simien and G. de Vaucouleurs, Astrophys. J. 302, 564 (1986).

    Article  ADS  Google Scholar 

  40. A. Tomita, H. Maehara, T. Takeuchi, et al., Publ. Astron. Soc. Jpn. 51, 285 (1999).

    ADS  Google Scholar 

  41. S. Tremaine and D. Weinberg, Astrophys. J. 282, L5 (1984).

    Article  ADS  Google Scholar 

  42. S. Veilleux, Astron. Soc. Pac. Conf. Proc. 284, 111 (2002).

    ADS  Google Scholar 

  43. K. Wada, Coevolution of Black Holes and Galaxies, Ed. by C. Ho (Cambridge Univ. Press, Cambridge, 2004), p. 187; astro-ph/0308134.

    Google Scholar 

  44. P. Zimmer, R. J. Rand, and J. T. McGraw, Astrophys. J. 607, 285 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Smirnova, A.V. Moiseev, V.L. Afanasiev, 2006, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2006, Vol. 32, No. 8, pp. 577–591.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smirnova, A.A., Moiseev, A.V. & Afanasiev, V.L. Observational evidence for AGN fueling: I. The case of NGC 6104—Merging with a companion. Astron. Lett. 32, 520–533 (2006). https://doi.org/10.1134/S1063773706080032

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773706080032

PACS numbers

Key words

Navigation