Skip to main content
Log in

On the Final Gravitational Wave Burst from Binary Black Holes Mergers

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

We use perturbation theory in the strong-field regime to study the inspiral-to-plunge transition of a test particle into a Kerr black hole. We found a smooth transition, without burst, and with lower energy and angular momentum radiated in gravitational waves with respect to previous treatments in the literature. Besides their theoretical interest, our results are relevant for the waveform templates of binary black hole mergers used for gravitational waves detection which are constructed on the basis of a inspiral-to-plunge transition with a high energetic burst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Schmidt, Nature (London, U.K.) 197, 1040 (1963).

    Article  ADS  Google Scholar 

  2. A. Hewish, S. J. Bell, J. D. H. Pilkington, P. F. Scott, and R. A. Collins, Nature (London, U.K.) 217, 709 (1968).

    Article  ADS  Google Scholar 

  3. R. Giacconi, S. Murray, H. Gursky, E. Kellogg, E. Schreier, and H. Tananbaum, Astrophys. J. 178, 281 (1972).

    Article  ADS  Google Scholar 

  4. R. W. Leach and R. Ruffini, Astrophys. J. 180, L15 (1973).

    Google Scholar 

  5. Physics and Astrophysics of Neutron Stars and Black Holes, Proceedings of the International School of Physics Enrico Fermi, Varenna, Italy, Ed. by R. Giacconi and R. Ruffini (North-Holland, Amsterdam, New York, 1978).

    Google Scholar 

  6. R. A. Hulse and J. H. Taylor, Astrophys. J. 195, L51 (1975).

    Google Scholar 

  7. J. M. Weisberg and J. H. Taylor, in Binary Radio Pulsars, Ed. by F. A. Rasio and I. H. Stairs, ASP Conf. Ser. 328, 25 (2005); astro-ph/0407149.

    ADS  Google Scholar 

  8. Neutron Stars, Black Holes and Binary X-Ray Sources, Proceedings of the Annual Meeting, San Francisco, CA, Feb. 28, 1974, Ed. by H. Gursky and R. Ruffini, Astrophys. Space Sci. Lib. 48 (1975).

    Google Scholar 

  9. B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, et al., Phys. Rev. Lett. 116, 061102 (2016); arXiv: 1602.03837.

    Article  ADS  MathSciNet  Google Scholar 

  10. B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, et al., Phys. Rev. Lett. 116, 241103 (2016); arXiv: 1606.04855.

    Article  ADS  Google Scholar 

  11. B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R.X.Adhikari,V. B. Adya, et al., Phys.Rev. Lett. 118, 221101 (2017); arXiv: 1706.01812.

    Article  ADS  Google Scholar 

  12. R. Ruffini and J. A. Wheeler, ESRO, SP 52, 45 (1969).

    Google Scholar 

  13. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1988; Pergamon, Oxford, 1975).

    Google Scholar 

  14. http://www.black-holes.org/waveforms.

  15. J. F. Rodríguez, J. A. Rueda, and R. Ruffini, J. Cosmol.Astropart. Phys. 2, 030 (2018); arXiv: 1706.07704.

    Article  ADS  Google Scholar 

  16. A. Ori and K. S. Thorne, Phys. Rev. D 62, 124022 (2000); gr-qc/0003032.

    Article  ADS  Google Scholar 

  17. A. Buonanno and T. Damour, Phys. Rev. D 59, 084006 (1999); gr-qc/9811091.

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Buonanno and T. Damour, Phys. Rev. D 62, 064015 (2000); gr-qc/0001013.

    Article  ADS  Google Scholar 

  19. R. Ruffini and J. A. Wheeler, in Proceedings of the Cortona Symposium on Weak Interactions, Ed. by L. Radicati (Accad. Nazionale dei Lincei, Rome, 1971).

    Google Scholar 

  20. M. Rees, R. Ruffini, and J. A. Wheeler, Black Holes, Gravitational Waves and Cosmology (Gordon and Breach Science, New York, 1974).

    MATH  Google Scholar 

  21. F. J. Zerilli, Phys. Rev. Lett. 24, 737 (1970).

    Article  ADS  Google Scholar 

  22. F. J. Zerilli, Phys. Rev. D 2, 2141 (1970).

    Article  ADS  MathSciNet  Google Scholar 

  23. T. Regge and J. A. Wheeler, Phys. Rev. 108, 1063 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  24. M. Davis, R. Ruffini, W. H. Press, and R. H. Price, Phys. Rev. Lett. 27, 1466 (1971).

    Article  ADS  Google Scholar 

  25. M. Davis, R. Ruffini, and J. Tiomno, Phys. Rev. D 5, 2932 (1972).

    Article  ADS  Google Scholar 

  26. R. Ruffini, Phys. Rev. D 7, 972 (1973).

    Article  ADS  Google Scholar 

  27. R. Ruffini and M. Sasaki, Prog. Theor. Phys. 66, 1627 (1981).

    Article  ADS  Google Scholar 

  28. E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962).

    Article  ADS  Google Scholar 

  29. R. H. Price, Phys. Rev. D 5, 2419 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  30. S. A. Teukolsky, Astrophys. J. 185, 635 (1973).

    Article  ADS  Google Scholar 

  31. S. L. Detweiler and E. Szedenits, Jr., Astrophys. J. 231, 211 (1979).

    Article  ADS  Google Scholar 

  32. M. Sasaki and T. Nakamura, Phys. Lett. A 89, 68 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  33. M. Sasaki and T. Nakamura, Prog. Theor. Phys. 67, 1788 (1982).

    Article  ADS  Google Scholar 

  34. Y. Kojima and T. Nakamura, Prog. Theor. Phys. 71, 79 (1984).

    Article  ADS  Google Scholar 

  35. J. Weber, Phys. Rev. Lett. 22, 1320 (1969).

    Article  ADS  Google Scholar 

  36. C.W. Misner, Phys. Rev. Lett. 28, 994 (1972).

    Article  ADS  Google Scholar 

  37. C. W. Misner, R. A. Breuer, D. R. Brill, P. L. Chrzanowski, H. G. Hughes, and C. M. Pereira, Phys. Rev. Lett. 28, 998 (1972).

    Article  ADS  Google Scholar 

  38. M. Davis, R. Ruffini, J. Tiomno, and F. Zerilli, Phys. Rev. Lett. 28, 1352 (1972).

    Article  ADS  Google Scholar 

  39. C. Cutler, L. S. Finn, E. Poisson, and G. J. Sussman, Phys. Rev. D 47, 1511 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  40. T. Damour, B. R. Iyer, and A. Nagar, Phys. Rev. D 79, 064004 (2009), 0811.2069.

    Article  ADS  MathSciNet  Google Scholar 

  41. T. Tanaka, M. Shibata, M. Sasaki, H. Tagoshi, and T. Nakamura, Prog. Theor. Phys. 90, 65 (1993).

    Article  ADS  Google Scholar 

  42. S. L. Detweiler, Astrophys. J. 225, 687 (1978).

    Article  ADS  Google Scholar 

  43. M. Shibata, Phys. Rev. D 48, 663 (1993).

    Article  ADS  Google Scholar 

  44. M. Shibata, Prog. Theor. Phys. 90, 595 (1993).

    Article  ADS  Google Scholar 

  45. S. A. Hughes, Phys. Rev. D 64, 064004 (2001); grqc/0104041.

    Article  ADS  Google Scholar 

  46. S. Drasco and S. A. Hughes, Phys.Rev.D73, 024027 (2006); gr-qc/0509101.

    Google Scholar 

  47. J. M. Bardeen, W. H. Press, and S. A. Teukolsky, Astrophys. J. 178, 347 (1972).

    Article  ADS  Google Scholar 

  48. S. A. Teukolsky, Phys. Rev. Lett. 29, 1114 (1972).

    Article  ADS  Google Scholar 

  49. S. A. Teukolsky and W. H. Press, Astrophys. J. 193, 443 (1974).

    Article  ADS  Google Scholar 

  50. S. A. Hughes, Phys. Rev. D 61, 084004 (2000); grqc/9910091.

    Article  ADS  MathSciNet  Google Scholar 

  51. S. E. Gralla, S. A. Hughes, and N. Warburton, Class. Quantum Grav. 33, 155002 (2016); arXiv: 1603.01221.

    Article  ADS  Google Scholar 

  52. R. T. Jantzen, P. Carini, and D. Bini, Ann. Phys. 215, 1 (1992), gr-qc/0106043.

    Article  ADS  Google Scholar 

  53. E. Poisson, A. Pound, and I. Vega, Living Rev. Relativ. 14, 7 (2011); arXiv: 1102.0529.

    Article  ADS  Google Scholar 

  54. M. J. Fitchett and S. Detweiler, Mon. Not. R. Astron. Soc. 211, 933 (1984).

    Article  ADS  Google Scholar 

  55. L.S. Finn and K. S. Thorne, Phys.Rev. D 62, 124021 (2000); gr-qc/0007074.

    Article  ADS  Google Scholar 

  56. T. Damour, Phys. Rev. D 64, 124013 (2001); grqc/0103018.

    Article  ADS  MathSciNet  Google Scholar 

  57. W.-B. Han and Z. Cao, Phys. Rev. D 84, 044014 (2011); arXiv: 1108.0995.

    Article  ADS  Google Scholar 

  58. A. Pound and E. Poisson, Phys. Rev. D 77, 044013 (2008); arXiv: 0708.3033.

    Article  ADS  Google Scholar 

  59. J. R. Gair, É. É. Flanagan, S. Drasco, T. Hinderer, and S. Babak, Phys. Rev. D 83, 044037 (2011); arXiv: 1012.5111.

    Article  ADS  Google Scholar 

  60. A. Taracchini, A. Buonanno, G. Khanna, and S. A. Hughes, Phys. Rev.D 90, 084025 (2014); arXiv: 1404.1819.

    Article  ADS  Google Scholar 

  61. C. Cutler, D. Kennefick, and E. Poisson, Phys. Rev. D 50, 3816 (1994).

    Article  ADS  Google Scholar 

  62. R. Ruffini, in Black Holes (Les Astres Occlus), Ed. by C. Dewitt and B. S. Dewitt (Gordon and Breach, New York, 1973), p. 451.

  63. H. Liu, J. Creswell, S. von Hausegger, A. D. Jackson, and P. Naselsky, J. Cosmol. Astropart. Phys. 2, 013 (2018); arXiv: 1802.00340.

    Article  ADS  Google Scholar 

  64. P. Naselsky, A. D. Jackson, and H. Liu, J. Cosmol. Astropart. Phys. 8, 029 (2016); arXiv: 1604.06211.

    Article  ADS  Google Scholar 

  65. H. Liu and A. D. Jackson, J. Cosmol. Astropart. Phys. 10, 014 (2016); arXiv: 1609.08346.

    Article  ADS  Google Scholar 

  66. J. Creswell, S. von Hausegger, A. D. Jackson, H. Liu, and P. Naselsky, J. Cosmol. Astropart. Phys. 8, 013 (2017); arXiv: 1706.04191.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Rueda.

Additional information

The article is published in the original.

Paper presented at the Third Zeldovich meeting, an international conference in honor of Ya.B. Zeldovich held in Minsk, Belarus on April 23–27, 2018. Published by the recommendation of the special editors: S.Ya. Kilin, R. Ruffini, and G.V. Vereshchagin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez, J.F., Rueda, J.A. & Ruffini, R. On the Final Gravitational Wave Burst from Binary Black Holes Mergers. Astron. Rep. 62, 940–952 (2018). https://doi.org/10.1134/S1063772918120338

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772918120338

Navigation