Skip to main content
Log in

Relation between the parameters of dust and of molecular and atomic gas in extragalactic star-forming regions

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The relationships between atomic and molecular hydrogen and dust of various sizes in extragalactic star-forming regions are considered, based on observational data from the Spitzer and Herschel infrared space telescopes, the Very Large Array (atomic hydrogen emission) and IRAM (CO emission). The source sample consists of approximately 300 star-forming regions in 11 nearby galaxies. Aperture photometry has been applied to measure the fluxes in eight infrared bands (3.6, 4.5, 5.8, 8, 24, 70, 100, and 160 μm), the atomic hydrogen 21 cm line, and CO (2–1) line. The parameters of the dust in the starforming regions were determined via synthetic-spectra fitting, such as the total dust mass, the fraction of polycyclic aromatic hydrocarbons (PAHs), etc. Comparison of the observed fluxes with the measured parameters shows that the relationships between atomic hydrogen, molecular hydrogen, and dust are different in low- and high-metallicity regions. Low-metallicity regions contain more atomic gas, but less molecular gas and dust, including PAHs. The mass of dust constitutes about 1% of the mass of molecular gas in all regions considered. Fluxes produced by atomic and molecular gas do not correlate with the parameters of the stellar radiation, whereas the dust fluxes grow with increasing mean intensity of stellar radiation and the fraction of enhanced stellar radiation. The ratio of the fluxes at 8 and 24 μm, which characterizes the PAH content, decreases with increasing intensity of the stellar radiation, possibly indicating evolutionary variations of the PAH content. The results confirm that the contribution of the 24 μm emission to the total IR luminosity of extragalactic star-forming regions does not depend on the metallicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Leroy, F. Walter, E. Brinks, F. Bigiel, W. J. G. de Blok, B. Madore, and M. D. Thornley, Astron. J. 136, 2782 (2008).

    Article  ADS  Google Scholar 

  2. R. Wu, S. C. Madden, F. Galliano, C. D. Wilson, et al., Astron. Astropys. 575, A88 (2015).

    Article  Google Scholar 

  3. K. M. Sandstrom, A. K. Leroy, F. Walter, A. D. Bolatto, K. V. Croxall, B. T. Draine, C. D. Wilson, M. Wolfire, D. Calzetti, R. C. Kennicutt, et al., Astrophys. J. 777, 5 (2013).

    Article  ADS  Google Scholar 

  4. G. J. Bendo, C. D. Wilson, B. E. Warren, E. Brinks, H. M. Butner, P. Chanial, D. L. Clements, S. Courteau, J. Irwin, F. P. Israel, et al., Mon. Not. R. Astron. Soc. 402, 1409 (2010).

    Article  ADS  Google Scholar 

  5. S. Eales, M. W. L. Smith, R. Auld, M. Baes, G. J. Bendo, S. Bianchi, A. Boselli, L. Ciesla, D. Clements, A. Cooray, et al., Astrophys. J. 761, 168 (2012).

    Article  ADS  Google Scholar 

  6. A. Rémy-Ruyer, S. C. Madden, F. Galliano, M. Galametz, T. T. Takeuchi, R. S. Asano, S. Zhukovska, V. Lebouteiller, D. Cormier, A. Jones, et al., Astron. Astrophys. 563, A31 (2014).

    Article  Google Scholar 

  7. B. A. Groves, E. Schinnerer, A. Leroy, M. Galametz, F. Walter, A. Bolatto, L. Hunt, D. Dale, D. Calzetti, K. Croxall, et al., Astrophys. J. 799, 96 (2015).

    Article  ADS  Google Scholar 

  8. S. Roychowdhury, M.-L. Huang, G. Kauffmann, J. Wang, and J. N. Chengalur, Mon. Not. R. Astron. Soc. 449, 3700 (2015).

    Article  ADS  Google Scholar 

  9. M. Compiègne, L. Verstraete, A. Jones, J.-P. Bernard, F. Boulanger, N. Flagey, J. le Bourlot, D. Paradis, and N. Ysard, Astron. Astrophys. 525, A103 (2011).

    Article  Google Scholar 

  10. A. P. Jones, Astron. Astrophys. 540, A1 (2012).

    Article  ADS  Google Scholar 

  11. G. J. Bendo, B. T. Draine, C. W. Engelbracht, G. Helou, et al., Mon. Not. R. Astron. Soc. 389, 629 (2008).

    Article  ADS  Google Scholar 

  12. M. S. Khramtsova, D. S. Wiebe, T. A. Lozinskaya, and O. V. Egorov, Mon. Not. R. Astron. Soc. 444, 757 (2014).

    Article  ADS  Google Scholar 

  13. D. S. Wiebe, M. S. Khramtsova, O. V. Egorov, and T. A. Lozinskaya, Astronomy Letters 40, 278 (2014).

    Article  ADS  Google Scholar 

  14. F. Walter, E. Brinks, W. J. G. de Blok, F. Bigiel, R. C. Kennicutt, Jr., M. D. Thornley, and A. Leroy, Astron. J. 136, 2563 (2008).

    Article  ADS  Google Scholar 

  15. R. C. Kennicutt, D. Calzetti, G. Aniano, P. Appleton, et al., Publ. Astron. Soc. Pacif. 123, 1347 (2011).

    Article  ADS  Google Scholar 

  16. R. C. Kennicutt, Jr., L. Armus, G. Bendo, D. Calzetti, et al., Publ. Astron. Soc. Pacif. 115, 928 (2003).

    Article  ADS  Google Scholar 

  17. A. K. Leroy, F. Walter, F. Bigiel, A. Usero, et al., Astron. J. 137, 4670 (2009).

    Article  ADS  Google Scholar 

  18. G. de Vaucouleurs, A. de Vaucouleurs, H. G. Corwin, Jr., R. J. Buta, G. Paturel, and P. Fouque, Sky Telescope 82, 621 (1991).

    Google Scholar 

  19. J. Moustakas, R. C. Kennicutt, Jr., C. A. Tremonti, D. A. Dale, J.-D. T. Smith, and D. Calzetti, Astrophys. J. Suppl. Ser. 190, 233 (2010).

    Article  ADS  Google Scholar 

  20. G. Aniano, B. T. Draine, K. D. Gordon, and K. Sandstrom, Publ. Astron. Soc. Pacif. 123, 1218 (2011).

    Article  ADS  Google Scholar 

  21. A. R. Marble, C. W. Engelbracht, L. van Zee, D. A. Dale, et al., Astrophys. J. 715, 506 (2010).

    Article  ADS  Google Scholar 

  22. B. T. Draine and A. Li, Astrophys. J. 657, 810 (2001).

    Article  ADS  Google Scholar 

  23. B. T. Draine, D. A. Dale, G. Bendo, K. D. Gordon, et al., Astrophys. J. 663, 866 (2007).

    Article  ADS  Google Scholar 

  24. J. S. Mathis, P. G. Mezger, and N. Panagia, Astron. Astrophys. 128, 212 (1983).

    ADS  Google Scholar 

  25. L. S. Pilyugin and T. X. Thuan, Astrophys. J. 631, 231 (2005).

    Article  ADS  Google Scholar 

  26. M. S. Khramtsova, D. S. Wiebe, P. A. Boley, and Y. N. Pavlyuchenkov, Mon. Not. R. Astron. Soc. 431, 2006 (2013).

    Article  ADS  Google Scholar 

  27. B.-K. Tan, J. Leech, D. Rigopoulou, B. E. Warren, et al., Mon. Not. R. Astron. Soc. 436, 921 (2013).

    Article  ADS  Google Scholar 

  28. M. G. Wolfire, C. F. McKee, D. Hollenbach, and A. G. G. M. Tielens, Astrophys. J. 587, 278 (2003).

    Article  ADS  Google Scholar 

  29. R. Amorín, C. Muñoz-Tuñón, J. A. L. Aguerri, and P. Planesas, Astron. Astrophys. 588, A23 (2016).

    Article  Google Scholar 

  30. R. Feldmann, N. Y. Gnedin, and A. V. Kravtsov, Astrophys. J. 747, 124 (2012).

    Article  ADS  Google Scholar 

  31. J. C. Weingartner and B. T. Draine, Astrophys. J. 548, 296 (2001).

    Article  ADS  Google Scholar 

  32. A. Rémy-Ruyer, S. C. Madden, F. Galliano, M. Galametz, et al., Astron. Astrophys. 563, A31 (2014).

    Article  Google Scholar 

  33. R. Feldmann, Mon. Not. R. Astron. Soc. 449, 3274 (2015).

    Article  ADS  Google Scholar 

  34. A. Rémy-Ruyer, S. C. Madden, F. Galliano, V. Lebouteiller, et al., Astron. Astrophys. 582, A121 (2015).

    Article  Google Scholar 

  35. J. Roman-Duval, K. D. Gordon, M. Meixner, C. Bot, et al., Astrophys. J. 797, 86 (2014).

    Article  ADS  Google Scholar 

  36. K. M. Sandstrom, A. D. Bolatto, B. T. Draine, C. Bot, and S. Stanimirović, Astrophys. J. 715, 701 (2010).

    Article  ADS  Google Scholar 

  37. J. M. Greenberg, J. S. Gillette, G. M. Muñoz Caro, T. B. Mahajan, R. N. Zare, A. Li, W. A. Schutte, M. de Groot, and C. Mendoza-Gómez, Astrophys. J. Lett. 531, L71 (2000).

    Article  ADS  Google Scholar 

  38. N. Bourne, L. Dunne, G. J. Bendo, M. W. L. Smith, et al., Mon. Not. R. Astron. Soc. 436, 479 (2013).

    Article  ADS  Google Scholar 

  39. Ó. Rodríguez, A. Clocchiatti, and M. Hamuy, Astron. J. 148, 107 (2014).

    Article  ADS  Google Scholar 

  40. R. B. Tully, H. M. Courtois, A. E. Dolphin, J. R. Fisher, et al., Astron. J. 146, 86 (2013).

    Article  ADS  Google Scholar 

  41. R. B. Tully, L. Rizzi, E. J. Shaya, H. M. Courtois, D. I. Makarov, and B. A. Jacobs, Astron. J. 138, 323 (2009).

    Article  ADS  Google Scholar 

  42. D. G. Russell, Astrophys. J. 565, 681 (2002).

    Article  ADS  Google Scholar 

  43. H. M. Courtois and R. B. Tully, Astrophys. J. 749, 174 (2012).

    Article  ADS  Google Scholar 

  44. B. A. Jacobs, L. Rizzi, R. B. Tully, E. J. Shaya, D. I. Makarov, and L. Makarova, Astron. J. 138, 332 (2009).

    Article  ADS  Google Scholar 

  45. J. G. Sorce, R. B. Tully, H. M. Courtois, T. H. Jarrett, J. D. Neill, and E. J. Shaya, Mon. Not. R. Astron. Soc. 444, 527 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. I. Smirnova.

Additional information

Original Russian Text © K.I. Smirnova, M.S. Murga, D.S. Wiebe, A.M. Sobolev, 2017, published in Astronomicheskii Zhurnal, 2017, Vol. 94, No. 8, pp. 648–666.

Electronic supplementary material

11444_2017_9837_MOESM1_ESM.pdf

Supplementary materials for the paper by Smirnova et al. “Relation between the Parameters of Dust and of Molecular and Atomic Gas in Extragalactic Star-Forming Regions”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, K.I., Murga, M.S., Wiebe, D.S. et al. Relation between the parameters of dust and of molecular and atomic gas in extragalactic star-forming regions. Astron. Rep. 61, 646–662 (2017). https://doi.org/10.1134/S1063772917070083

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772917070083

Navigation