Skip to main content
Log in

Sound Absorption and Metamaterials: A Review

  • CLASSICAL PROBLEMS OF LINEAR ACOUSTICS AND WAVE THEORY
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The paper reviews and analyzes the state of the art of the problem on sound absorption in the linear formulation and methods for solving it. It is shown that the majority of publications are reduced, from the viewpoint of absorption efficiency, to the realization of one of two ideal absorbers: a Kirchhoff blackbody and an optimal absorber. These two absorbers have fundamentally different properties: the relative cross section of the blackbody absorber is equal to unity, whereas for the optimal absorber, this is the largest possible value, which can be much larger than unity. The practical problems they solve also differ. Ways of creating modern efficient absorbers are discussed, the most promising of which are absorbers made of acoustic metamaterials, which realize ideal bodies in the optimal way and require developed additive technologies for their manufacture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Notes

  1. It is noteworthy that Planck’s statement that a blackbody has the greatest possible absorption efficiency has become commonplace in electrodynamics and acoustics and has long (nearly the entire 20th century) been considered indisputable. Here and below, absorption efficiency is understood as the relative cross section of absorption, i.e., the ratio of the absorption power to the incident power, which for an ideal blackbody is equal to unity [4]. Its relative scattering cross section is also equal to unity, the field of which, together with the incident field, forms a shadow.

  2. It seems that the term acoustic black hole is not quite suitable for the above-mentioned absorbers. In cosmology, a black hole is a region with gravity so strong that neither matter nor electromagnetic radiation can escape it. The described sound absorbers possess only half this property: they absorb only sound waves from external sources, but, as can be demonstrated, they easily emit waves from internal sources into the surrounding space.

  3. The Z matrix is defined as follows. Surface A of a body is divided into N areas ΔAn with small wave dimensions. Each area is considered an independent input characterized by a normal velocity and force, and the entire body is considered a system with N inputs. The relationship between the force and velocity N-vectors is described by an N × N-matrix Z. For details, see [32].

REFERENCES

  1. J. W. Strutt, Lord Rayleigh, The Theory of Sound, 2nd ed. (Dover Publ., New York, 1945; Gos. Izd. Tekhniko-Teoreticheskoi Literatury, Moscow, 1955), Vol. 2.

  2. G. Kirchhoff, London, Edinburgh Dublin Philos. Mag. J. Sci. Ser. 4, No. 130, 1 (1860). Translation from Ann. Phys. Chem. 109, 275 (1860).

    Google Scholar 

  3. M. Planck, Theory of Heat Radiation, 2nd ed. (P. Blakiston’s Son and Co., Philadelphia, PA, 1914). Translation from M. Planck, Vorlesungen uber die Theorie der Warmestrahlung (von Johann Ambrosius Barth Verlag, Leipzig, 1906).

  4. L. D. Landau and E. M. Lifshits, The Classical Theory of Fields, Vol. 2 of Course of Theoretical Physics (Pergamon Press, Oxford, 1971; Nauka, Moscow, 1967).

  5. W. C. Sabine, Collected Papers on Acoustics (Harvard University Press, Cambridge, MA, 1923).

    Google Scholar 

  6. C. F. Eyring, J. Acoust. Soc. Am. 1, 217 (1930); C. F. Eyring, J. Acoust. Soc. Am. 4, 178 (1933).

    Article  ADS  Google Scholar 

  7. N. N. Andreev, V. S. Grigor’ev, I. G. Leizer, L. D. Rozenberg, and B. D. Tartakovskii, Usp. Fiz. Nauk 37 (3), 269 (1949).

    Article  Google Scholar 

  8. S. N. Rzhevkin, Usp. Fiz. Nauk 30 (1–2), 40 (1946);

    Article  Google Scholar 

  9. S. N. Rzhevkin, Usp. Fiz. Nauk 34 (1), 1 (1948).

    Article  Google Scholar 

  10. E. Meyer, W. Kuhl, H. Oberst, E. Skudrzyk, and K. Tamm, Sound Absorption and Sound Absorbers in Water (Acoustical Society of America, Washington, DC, 1947).

    Google Scholar 

  11. Technical Aspects of Sound, Vol. 2: Ultrasonic Range, Underwater Acoustics, Ed. by E. G. Richardson (Elsevier Applied Science, 1957; Voennoe Izd. Ministerstva Oborony SSSR, Moscow, 1962).

  12. C. Zwikker and C. W. Kosten, Sound Absorbing Materials (Elsevier, New York, 1949; Inostrannaya Literatura, Moscow, 1952).

  13. T. J. Cox and P. D' Antonio, Acoustic Absorbers and Diffusers (Theory, Design, and Applications) (Spon Press, London, 2006).

    Google Scholar 

  14. Noise Reducing in Buildings and Residential Areas, Ed. by G. L. Osipov and E. Ya. Yudin (Stroiizdat, Moscow, 1987) [in Russian].

    Google Scholar 

  15. K. H. Kuttruff, Room Acoustics, 4th ed. (Spon Press, London, 2000).

    Google Scholar 

  16. Handbook on Ships Acoustics, Ed. by I. I. Klyukin and I. I. Bogolepov (Sudostroenie, Leningrad, 1978) [in Russian].

    Google Scholar 

  17. A. S. Nikiforov, Vibration Absorption Onboard a Ship (Sudostroenie, Leningrad, 1979) [in Russian].

    Google Scholar 

  18. Aviation Acoustics, Ed. by A. G. Munin and V. E. Kvitka (Mashinostroenie, Moscow, 1973) [in Russian].

    Google Scholar 

  19. Taschenbuch der technischen akustik, Ed. by G. Müller and M. Heckl (Springer, Berlin, Heildelberg, New York, 1975; Sudostroenie, Leningrad, 1980).

  20. L. H. Bell, Industrial Noise Control: Fundamentals and Applications (Marcel Decker, New York, 1982).

    Google Scholar 

  21. Handbook of Noise and Vibration Control, Ed. by M. J. Crocker, (John Wiley and Sons, Hoboken, NJ, 2007).

    MATH  Google Scholar 

  22. A. Ya. Zverev, Acoust. Phys. 62 (4), 478 (2016).

    Article  ADS  Google Scholar 

  23. R. J. Astley, A. Agarwal, K. R. Holland, P. F. Joseph, R. H. Self, M. G. Smith, R. Sugimoto, and B. J. Tester, in Proc. 14th Int. Congress on Sound and Vibration (ICSV14) (Cairns, 2007). https://acoustics.asn.an/ conference_proceedings/ICSV14/papers/p819.pdf.

  24. Yu. I. Bobrovnitskii and T. M. Tomilina, J. Mach. Manuf. Reliab. 43 (5), 333 (2014).

    Article  Google Scholar 

  25. L. N. Zakhar’ev and A. A. Lemanskii, Radioelektronika 14 (11), 1930 (1969);

    Google Scholar 

  26. L. N. Zakhar’ev and A. A. Lemanskii, Waves Scattering by “Black” Bodies (Sovetskoe Radio, Moscow, 1972) [in Russian].

    Google Scholar 

  27. E. D. Daniel, J. Acoust. Soc. Am. 35, 571 (1963).

    Article  ADS  Google Scholar 

  28. S. I. Thomasson, Acustica 44, 265 (1980).

    MathSciNet  Google Scholar 

  29. H. Paul and R. Fisher, Usp. Fiz. Nauk 141 (2), 374 (1983).

    Article  Google Scholar 

  30. C. F. Bohren, Am. J. Phys. 51 (4), 323 (1983).

    Article  ADS  Google Scholar 

  31. V. G. Veselago, Usp. Fiz. Nauk 92 (3), 517 (1967).

    Article  Google Scholar 

  32. J. B. Pendry, D. Schurig, and D. R. Smith, Science 312 (5781), 1780 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  33. U. Leonhardt, Science 312 (5781), 1777 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  34. Yu. I. Bobrovnitskii, Acoust. Phys. 52 (6), 638 (2006).

    Article  ADS  Google Scholar 

  35. G. Kirchhoff, Mathematische Optic (Druckund Verlag von B. G. Trubner, Leipzig, 1891).

    MATH  Google Scholar 

  36. B. B. Baker and E. T. Copson, The Mathematical Theory of Huygen`s Principle, 2nd ed. (Clarendon Press, Oxford, 1969).

    Google Scholar 

  37. H. Hönl, A. W. Maue, and K. Westpfahl, Theorie der beugung (Springer, Berlin, Gottingen, Heidelberg, 1961).

    Google Scholar 

  38. H. M. Macdonald, Philos. Trans. R. Soc. London, Ser. A 212 (10), 299 (1912).

    Google Scholar 

  39. V. V. Tyutekin, Acoust. Phys. 43 (5), 589 (1997).

    ADS  Google Scholar 

  40. S. V. Krynkin and V. V. Tyutekin, Acoust. Phys. 48 (4), 458 (2002).

    Article  ADS  Google Scholar 

  41. Elastomeric and Composite Materials for Noise Absorbing Ship Structures, Ed. by A. V. Ionov (Krylov State Research Centre, St. Petersburg, 2005) [in Russian].

    Google Scholar 

  42. P. Ya. Ufimtsev, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 11 (6), 912 (1968).

    Google Scholar 

  43. E. E. Narimanov and A. V. Kildishev, Appl. Phys. Lett. 95, 041106 (2009).

    Article  ADS  Google Scholar 

  44. Rui-Qi Li, Xue-Feng Zhu, Bin Liang, Yong Li, Xin-Ye Zou, and Jian-Chun Cheng, Appl. Phys. Lett. 99, 193507 (2011).

    Article  ADS  Google Scholar 

  45. A. Climente, D. Torrent, and J. Sanchez-Dehesa, Appl. Phys. Lett. 100, 144103 (2012).

    Article  ADS  Google Scholar 

  46. Q. Wei, Y. Cheng, and X. J. Liu, Appl. Phys. Lett. 100, (094105) (2012).

  47. Z. Chang and G. Hu, Appl. Phys. Lett. 101, (054102) (2012).

  48. L.-Y. Zheng, Y. Wu, X.-L. Zhang, X. Ni, Z.-G. Chen, M.-H. Lu, and Y.-F. Chen, AIP Adv. 3, 102122 (2013).

    Article  ADS  Google Scholar 

  49. C. J. Naify, T. P. Martin, C. N. Layman, M. Nicholas, A. L. Thangawng, D. C. Calvo, and G. J. Orris, Appl. Phys. Lett. 104, 073505 (2014).

    Article  ADS  Google Scholar 

  50. A. S. Elliott, R. Venegas, J.-P. Groby, and O. Umnova, J. Appl. Phys. 115, 204902 (2014).

    Article  ADS  Google Scholar 

  51. Y.-J. Liang, L.-W. Chen, C.-C. Wang, and T.-L. Chang, J. Appl. Phys. 115, (244513) (2014).

  52. M. A. Mironov, Akust. Zh. 34 (3), 546 (1988).

    Google Scholar 

  53. M. A. Mironov and V. V. Pislyakov, Acoust. Phys. 48 (3), 347 (2002).

    Article  ADS  Google Scholar 

  54. V. V. Krylov and F. J. B. S. Tilman, J. Sound. Vib. 274, 605 (2004).

    Article  Google Scholar 

  55. V. V. Krylov and R. E. T. B. Winward, J. Sound Vib. 300, 43 (2007).

  56. Z. Zhao, S. C. Conlon, and F. Semperlotti, Smart Mater. Struct. 23, 065021 (2014).

    Article  ADS  Google Scholar 

  57. S. C. Conlon and J. B. Fahnline, J. Acoust. Soc. Am. 137 (1), 447 (2015).

    Article  ADS  Google Scholar 

  58. S. Yan, A. M. Lomonosov, and Z. Shen, J. Appl. Phys. 119, 214902 (2016).

    Article  ADS  Google Scholar 

  59. H. B. G. Casimir, Rev. Mod. Phys. 17, 343 (1945).

    Article  ADS  Google Scholar 

  60. M. Visser, arXiv: gr-qc/9901047v1.

  61. B. Liang, B. Yuan, and J. C. Cheng, Phys. Rev. Lett. 103, 104301 (2009).

    Article  ADS  Google Scholar 

  62. A. A. Maznev, A. G. Every, and O. B. Wright, Wave Motion 50, 776 (2013).

    Article  Google Scholar 

  63. B.-I. Popa and S. A. Cummer, Nat. Commun. 5, 3398 (2014).

    Article  Google Scholar 

  64. R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman, and A. Alu, Science 343, 516 (2014).

    Article  ADS  Google Scholar 

  65. R. Fleury, D. L. Sounas, and A. Alu, Phys. Rev. B 91, 174306 (2015).

    Article  ADS  Google Scholar 

  66. S. Karni, Network Theory: Analysis and Synthesis (Allyn and Bacon, Boston, MA, 1966).

    Google Scholar 

  67. Yu. I. Bobrovnitskii and M. P. Korotkov, Akust. Zh. 37 (5), 872 (1991).

    ADS  Google Scholar 

  68. Yu. I. Bobrovnitskii, Acoust. Phys. 57 (5), 595 (2011).

    Article  ADS  Google Scholar 

  69. M. V. Vil’de, Yu. D. Kaplunov, and L. Yu. Kossovich, Boundary and Interface Resonance Phenomena in Elastic Bodies (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  70. Surface Polaritons. Electromagnetic Waves on Surfaces and Media Boundaries, Ed. by V. M. Agranovich and D. L. Mills (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  71. Yu. Bobrovnitskii, J. Acoust. Soc. Am. 141 (5), Part 2, 3645 (2017).

  72. Yu. I. Bobrovnitskii, T. M. Tomilina, K. D. Morozov, and B. N. Bakhtin, in Proc. 23rd Int. Congress on Sound and Vibration (Athens, 2016). https://www.iiav.org/archives_ icsv_last/2016_icsv23/content/papers/papers/full_paper_ 82 5_20160530175723879.pdf.

    Google Scholar 

  73. T. M. Tomilina, K. M. Afanasyev, Yu. I. Bobrovnitskii, A. S. Grebennikov, M. M. Laktionova, G. M. Makaryants, A. V. Sotov, V. G. Smelov, A. Safin, and R. Vdovin, in Proc. 23rd Int. Congress on Sound and Vibration (Athens, 2016). https://www.iiav.org/archives_ icsv_last/2016_icsv23/content/papers/papers/full_paper_86 4_20160523182357340.pdf.

    Google Scholar 

  74. T. M. Tomilina, Yu. I. Bobrovnitskii, and B. N. Bakhtin, in Proc. 24th Int. Congress on Sound and Vibration (London, 2017). https://www.iiav.org/archives_ icsv_last/2017_icsv24/content/papers/papers/full_paper_12 28_20170602183158834.pdf.

    Google Scholar 

  75. T. M. Tomilina, A. S. Grebennikov, and M. M. Laktionova, in Proc. 24th Int. Congress on Sound and Vibration (London, 2017). https://www.iiav.org/archives_ icsv_last/2017_icsv24/content/papers/papers/full_paper_12 32_20170531203439493.pdf.

    Google Scholar 

  76. R. A. Vdovin, T. M. Tomilina, V. G. Smelov, and M. M. Laktionova, Procedia Eng. 176, 595 (2017).

    Article  Google Scholar 

  77. Y. I. Bobrovnitskii, K. D. Morozov, and T. M. Tomilina, Acoust. Phys. 63 (2), 141 (2017).

    Article  ADS  Google Scholar 

  78. Yu. I. Bobrovnitskii, K. D. Morozov, and T. M. Tomilina, Acoust. Phys. 56 (2), 127 (2010).

    Article  ADS  Google Scholar 

  79. V. C. Slater, Rev. Mod. Phys. 18 (4), 441 (1946).

    Article  ADS  Google Scholar 

  80. A. Yariv, Electron. Lett. 36 (4), 321 (2000).

    Article  Google Scholar 

  81. Y. Xu, Y. Li, R. K. Lee, and A. Yariv, Phys. Rev. E 62 (5), 7389 (2000).

    Article  ADS  Google Scholar 

  82. A. Merkel, G. Theocharis, O. Richoux, V. Romero-Garcia, and V. Pagneux, Appl. Phys. Lett. 107, 244102 (2015).

    Article  ADS  Google Scholar 

  83. V. Romero-Garcia, G. Theocharis, O. Richoux, A. Merkel, V. Tournat, and V. Pagneux, Sci. Rep. 6, 19519 (2016).

    Article  ADS  Google Scholar 

  84. J.-P. Groby, R. Pommier, and Y. Auregan, J. Acoust. Soc. Am. 139 (4), 1660 (2016).

    Article  ADS  Google Scholar 

  85. V. Romero-Garcia, G. Theocharis, O. Richoux, and V. Pagneux, J. Acoust. Soc. Am. 139 (6), 3395 (2016).

    Article  ADS  Google Scholar 

  86. N. Jimenez, W. Huang, V. Romero-Garcia, V. Pagneux, and J.-P. Groby, Appl. Phys. Lett. 109, 121902 (2016).

    Article  ADS  Google Scholar 

  87. N. Jimenez, V. Romero-Garcia, A. Cebrecos, R. Pico, V. J. Sanchez-Morcillo, and L. M. Garcia-Raffi, AIP Adv. 6, 121605 (2016).

    Article  ADS  Google Scholar 

  88. Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, Phys. Rev. Lett. 105, 053901 (2010).

    Article  ADS  Google Scholar 

  89. J. Z. Song, P. Bai, Z. H. Hang, and Y. Lai, New J. Phys. 16, 033026 (2014).

    Article  ADS  Google Scholar 

  90. P. Bai, Y. Wu, and Y. Lai, Europhys. Lett. 114, 28003 (2016).

    Article  ADS  Google Scholar 

  91. J. Ng, H. Chen, and C. T. Chan, Opt. Lett. 34 (5), 644 (2009).

    Article  ADS  Google Scholar 

  92. M. I. Tribelsky, Europhys. Lett. 94, 14004 (2011).

    Article  ADS  Google Scholar 

  93. P. Kapitanova, V. Ternovski, A. Microshnichenko, N. Pavlov, P. Belov, and M. Tribelsky, Sci. Rep. 7, 731 (2017).

  94. C. A. Valagiannopoulos, J. Vehmas, C. R. Simovski, S. A. Tretyakov, and S. I. Maslovsti, Phys. Rev. B 92, 245402 (2015).

    Article  ADS  Google Scholar 

  95. C. A. Valagiannopoulos, C. R. Simovski, and S. A. Tretyakov, Europhys. Lett. Appl. Metamat. 4 (5), 1 (2017).

    Google Scholar 

  96. H. F. Olsen and E. G. May, J. Acoust. Soc. Am. 25, 1130 (1953).

    Article  ADS  Google Scholar 

  97. A. M. Baz, J. Vib. Acoust. 132 (1), 1 (2010).

    Article  Google Scholar 

  98. B.-I. Popa, L. Zigoneanu, and S. A. Cummer, Phys. Rev. B 88, 024303 (2013).

    Article  ADS  Google Scholar 

  99. B.-I. Popa, D. Shinde, A. Konneker, and S. A. Cummer, Phys. Rev. B 91, 220303 (2015).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was supported by a grant from the Russian Science Foundation (project no. 15-19-00284).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Bobrovnitskii.

Additional information

Translated by A. Carpenter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobrovnitskii, Y.I., Tomilina, T.M. Sound Absorption and Metamaterials: A Review. Acoust. Phys. 64, 519–526 (2018). https://doi.org/10.1134/S1063771018040024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771018040024

Keywords:

Navigation