Skip to main content
Log in

Immunity of a Detection System for Optimum Space Filtration and Use of an Interference Compensator

  • Acoustic Signal Processing. Computer Simulation
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The paper studies the dependence of the potential noise immunity of a detection system and noise immunity of a detection system with an interference compensator on the array parameters, angular signal position and local noise, the degree of correlation of distributed noise and spectral densities of the signal power, noise, and interference. The gain in noise immunity of the detection system when the optimal spatial filter is used with respect to the use of an interference compensator is estimated as a function of the degree of correlation of distributed noise and the power of random amplitude–phase errors of the weight coefficients of the array.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Sazontov and A. I. Malekhanov, Acoust. Phys. 61 (2), 213 (2015).

    Article  ADS  Google Scholar 

  2. G. S. Malyshkin and G. B. Sidel’nikov, Acoust. Phys. 60 (5), 570 (2014).

    Article  ADS  Google Scholar 

  3. V. C. Anderson, J. Acoust. Soc. Am. 45 (2), 398 (1969).

    Article  ADS  Google Scholar 

  4. Ya. D. Shirman and V. N. Manzhos, Theory and Technique for Processing Radar Information on Noise Background (Radio i Svyaz’, Moscow, 1981) [in Russian].

    Google Scholar 

  5. V. G. Gusev, Systems for Spatiotemporal Processing Hydro-Acoustic Information (Sudostroenie, Leningrad, 1988) [in Russian].

    Google Scholar 

  6. G. S. Malyshkin, Optimal and Adaptive Methods for Processing Hydro-Acoustic Signals, Vol. 2: Adaptive Methods (The State Research Center of the Russian Federation–Concern CSRI Elektropribor, JSC, St. Petersburg, 2011) [in Russian].

    Google Scholar 

  7. V. A. Zverev, Acoust. Phys. 62 (3), 383 (2016).

    Article  ADS  Google Scholar 

  8. J. Capon, Proc. IEEE 57, 1408 (1969).

    Article  Google Scholar 

  9. J. Li, P. Stoica, and Z. Wang, IEEE Trans. Signal Process. 52, 2407 (2004).

    Article  ADS  Google Scholar 

  10. Y. Wang, J. Li, and P. Stoica, IEEE Trans. Signal Process. 53, 2713 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  11. W. J. Bangs and P. M. Schultheiss, in Signal Processing (Academic Press, London, 1973), pp. 577–590.

    Google Scholar 

  12. E. N. Kalenov, Acoust. Phys. 61 (2), 205 (2015).

    Article  ADS  Google Scholar 

  13. G. M. Jenkins and D. G. Watts, Spectral Analysis and its Applications (Holden-Day, San Francisco, 1968).

    MATH  Google Scholar 

  14. W. S. Burdic, Underwater Acoustic System Analysis (Prentice-Hall, Englewood Cliffs, NJ, 1984).

    Google Scholar 

  15. V. I. Mayatskii, Radiotekh. Elektron. 12 (12), 2118 (1967).

    Google Scholar 

  16. M. D. Smaryshev, Directivity of Hydro-Acoustic Antennas (Sudostroenie, Leningrad, 1973) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Kalenov.

Additional information

Original Russian Text © E.N. Kalenov, 2018, published in Akusticheskii Zhurnal, 2018, Vol. 64, No. 3, pp. 379–388.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalenov, E.N. Immunity of a Detection System for Optimum Space Filtration and Use of an Interference Compensator. Acoust. Phys. 64, 365–374 (2018). https://doi.org/10.1134/S1063771018030089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771018030089

Keywords

Navigation