Skip to main content
Log in

The effect of daily exposure to low hardening temperature on plant vital activity

  • Plant Developmental Biology
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Phenomenological responses of plants to daily short-term exposure to low hardening temperature was studied under chamber and field conditions. Experiments were carried out on cucumber (Cucumis sativus L.), barley (Hordeum vulgare L.), marigolds (Tagetes L.), and petunia (Petunia × hybrida) plants. The obtained data demonstrated a similar pattern of response in all studied plant species to different variants of exposure to low hardening temperature. The main features of plant response to daily short-term exposure to low hardening temperature include: a higher increment in cold tolerance (cf. two-or threefold increase relative to constant low hardening temperature) that peaked on day 5 (cf. day 2 at constant low hardening temperature) and was maintained for 2 weeks (cf. 3–4 days at constant low hardening temperature); a simultaneous increase in heat tolerance (cf. twofold relative to constant low hardening temperature) maintained over a long period (cf. only in the beginning of the exposure to constant low hardening temperature); a sharp drop in the subsequent cold tolerance after plant incubation in the dark (cf. a very low decrease in cold tolerance following the exposure to constant low hardening temperature); a combination of high cold tolerance and high photochemical activity of the photosynthetic apparatus (cf. a low non-photochemical quenching at constant low hardening temperature); and the capacity to increase cold tolerance in response to repeated short-term exposures to low hardening temperature in plants grown outdoors (cf. a gradual increase after repeated exposure to constant low hardening temperature). Possible mechanisms underlying the plant response to daily short-term exposure to low temperature are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandrov, V.Ya., Reaktivnost’kletok i belki (Cell Responsivity and Proteins), Leningrad: Nauka, 1985.

    Google Scholar 

  • Aleksandrov, V.Ya. and Kislyuk, I.M., The Cellular Reaction to Heat Shock: The Physiological Aspect, Tsitologiya, 1994, vol. 36, no. 1, pp. 5–45.

    Google Scholar 

  • Belik, V.F., Effect of Alternating-Temperature Acclimation of Seeds on Physiological Properties of Cold-Tolerant Cucumbers, Fiziol. Rastenii, 1963, vol. 10, no. 3, pp. 351–357.

    Google Scholar 

  • Benzioni, A. and Itai, C., Precondition of Tobacco and Bean Leaves to Heat Shock by High Temperature or NaCl, Physiol. Plant., 1975, vol. 35, pp. 80–84.

    Article  CAS  Google Scholar 

  • Bezdenezhnykh, V.A., Markovskaya, E.F., Sysoeva, M.I., and Sherudilo, E.G., Formalization of Plant Response to Low Temperature, Sb. tr. konf. “Matematika. Komp’yuter. Obrazovanie”. Vyp. 12. (Proc. Conf. “Mathematics. Computer. Education.” Vol. 12) Moscow, 2005, pp. 1047–1054.

  • Boussiba, S., Rikin, A., and Richmond, A.E., The Role of Abscisic Acid in Cross-Adaptation of Tobacco Plant, Plant Physiol., 1975, vol. 56, pp. 337–339.

    PubMed  CAS  Google Scholar 

  • Buduryan, N.N., Effect of Presowing Seed Exposure to Low Temperature on Physiological and Biochemical Processes in Melon Melo zard, in Voprosy fiziologii i biokhimii kul’turnykh rastenii. Vyp. 1 (Problems of Physiology and Biochemistry of Crops. Vol. 1), Chisinau: Shtiintsa, 1962, pp. 52–70.

    Google Scholar 

  • Drozdov, S.N., Kurets, V.K., Budykina, N.P., and Balagurova, N.I., Measuring Frost Tolerance in Plants, in Metody otsenki ustoichivosti rastenii k neblagopriyatnym usloviyam sredy (Methods to Evaluate Plant Tolerance to Unfavorable Environmental Conditions), Leningrad: Kolos, 1976, pp. 222–228.

    Google Scholar 

  • Drozdov, S.N., Kuretz, V.K., and Titov, A.F., Termorezistentnost’ aktivno vegetiruyushchikh rastenii (Thermoresistance of Actively Growing Plants), Leningrad: Nauka, 1984.

    Google Scholar 

  • Filatov, N.N., Nazarova, L.E., Salo, Yu.A., and Semenov, A.V., Dynamics and Prediction of Climatic Changes in Eastern Fennoscandia, in Gidroekologicheskie problemy Karelii i ispol’zovaniya vodnykh resursov (Environmental Issues of Karelian Waters and Their Use), Petrozavodsk: Izd-vo KarNTs Ross. Akad. Nauk, 2003, pp. 33–39.

    Google Scholar 

  • Genkel’, P.A. and Kushnirenko, S.V., Kholodostoikost’ rastenii i termicheskie sposoby ee povysheniya (Plant Cold Tolerance and Thermal Methods to Increase It), Moscow: Nauka, 1966.

    Google Scholar 

  • Genkel’, P.A., Sarycheva, A.P., and Sytnikova, O.A., Effect of Seed Exposure to Alternating Temperature on Maize Development and Maturation, Fiziol. Rastenii, 1955, vol. 2, no. 5, pp. 447–453.

    Google Scholar 

  • Golenkin, M.I., Pobediteli v bor’be za sushchestvovanie (Winners in the Struggle for Existence), Moscow: Uchpedgiz, 1959.

    Google Scholar 

  • Gray, G.R. and Heath, D., A Global Reorganization of the Metabolome in Arabidopsis during Cold Acclimation is Revealed by Metabolic Fingerprinting, Physiol. Plant., 2005, vol. 124, pp. 236–248.

    Article  CAS  Google Scholar 

  • Guy, C.L., Cold Acclimation and Freezing Stress Tolerance: Role of Protein Metabolism, Annu. Rev. Plant Physiol. Mol. Biol., 1990, vol. 41, pp. 187–223.

    CAS  Google Scholar 

  • Hale, H.B., Cross-Adaptation, Environ. Res., 1969, vol. 2, pp. 423–434.

    Article  PubMed  CAS  Google Scholar 

  • Hincha, D.K., Rapid Induction of Frost Hardiness in Spinach Seedlings under Salt Stress, Planta, 1994, vol. 194, pp. 274–278.

    Article  CAS  Google Scholar 

  • Kandina, G.V., Problems of Presowing Exposure of Germinating Cucumber to Low Temperature on Physiological and Biochemical Processes, in Voprosy fiziologii i biokhimii kul’turnykh rastenii. Vyp. 1 (Problems of Physiology and Biochemistry of Crops. Vol. 1), Chisinau: Shtiintsa, 1962, pp. 71–79.

    Google Scholar 

  • Kolesnichenko, A.V. and Voinikov, V.K., Belki nizkotemperaturnogo stressa rastenii (Low Temperature Stress Proteins in Plants), Irkutsk: Art-Press, 2003.

    Google Scholar 

  • Koster, K.L. and Lynch, D.V., Solute Accumulation and Copartmentation during the Cold Acclimation of Puma Rye, Plant Physiol., 1992, vol. 98, pp. 108–113.

    Article  PubMed  CAS  Google Scholar 

  • Kushnirenko, S.V., Long-Term Effect of Seed Exposure to Alternating Temperature (Cold Acclimation) on Some Physiological Properties in Plants, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow: IFR im. K.A. Timiryazeva RAN, 1962.

    Google Scholar 

  • Kuznetsov, V.V., Inducible Systems and Their Role in Plant Adaptation to Stress Factors, Extended Abstract of Doctoral (Biol.) Dissertation, Chisinau: IFR ANRMoldovy, 1992.

    Google Scholar 

  • Kuznetsov, Vl.V., Rakitin, V.Yu., Borisova, N.N., and Rotschupkin, B.V., Why Does Heat Shock Increase Salt Resistance in Cotton Plants?, Plant Physiol. Biochem., 1993, vol. 31, no. 2, pp. 181–188.

    CAS  Google Scholar 

  • Kuznetsov, Vl.V., Rakitin, V.Yu., Zholklevich, V.N., Effects of Preliminary Heat-Shock Treatment on Acclimation of Osmolytes and Drought Resistance in Cotton Plants during Water Deficiency, Physiol. Plant., 1999, vol. 107, pp. 399–406.

    Article  CAS  Google Scholar 

  • Lee, M.A., Chun, H.S., Kim, J.W., et al. Changes in Antioxidant Enzyme Activities in Detached Leaves of Cucumber Exposed to Chilling, J. Plant Biol., 2004, vol. 47, pp. 117–123.

    Article  CAS  Google Scholar 

  • Markovskaya, E.F., Adaptation of Cucumis sativus L. to the Temperature Factor in Ontogeny, Fiziol. Rastenii, 1994, vol. 41, no. 4, pp. 589–594.

    Google Scholar 

  • Markovskaya, E.F., Sysoeva, M.I., Khar’kina, T.G., and Sherudilo, E.G., Effect of Short-term Decrease of Night Temperature on Growth and Cold Resistance of the Cucumber Plants, Fiziol. Rast. (Moscow), 2000, vol. 47, no. 4, pp. 511–515.

    Google Scholar 

  • Markovskaya, E.F., Sherudilo, E.G., and Sysoyeva, M.I., Influence of Long-Term and Short-Term Temperature Drops on Acclimation and De-acclimation in Cucumber Cold Resistance, Acta Hort., 2003, vol. 618, pp. 233–236.

    Google Scholar 

  • Markovskaya, E.F., Sysoeva, M.I., and Sherudilo, E.G., Plants in Unstable Daily Climate, in Mater. Mezhdunar. konf. “Severnaya Evropa v XXI veke: priroda, kul’tura, ekonomika”, Petrozavodsk (Proc. Int. Conf. “Northern Europe in the 21st Century: Nature, Culture, and Economics,” Petrozavodsk), 2006, pp. 142–145.

  • Markovskaya, E.F., Sysoeva, M.I., Sherudilo, E.G., and Topchieva, L.V., Differential Gene Expression in Cucumber Plants in Response to Repeated Short-Term Exposure to Low Temperature, Fiziol. Rastenii, 2007, vol. 54, no. 6, pp. 765–767.

    Google Scholar 

  • Matveeva, E.M., Sysoeva, M.I., Sherudilo, E.G., and Markovskaya, E.F., Host-Parasite Relationships between Potato Plants and Potato Cyst-Forming Nematode Globodera rostochiensis under Short-Term Impact of Low Hardening Temperatures, Rus. J. Nematol., 2005, vol. 13, no. 2, pp. 154.

    Google Scholar 

  • Mishchenko, Z.A., Bioklimat dnya i nochi (Bioclimate of Day and Night), Leningrad: Gidrometeoizdat, 1984.

    Google Scholar 

  • Myster, J. and Moe, R., Effect of Diurnal Temperature Alternations on Plant Morphology in Some Greenhouse Crops—A Mini Review, Sci. Hortic., 1995, vol. 62, pp. 205–215.

    Article  Google Scholar 

  • Nikolaeva, M.G., Lyanguzova, I.V., and Pozdova, L.M., Biologiya semyan (Seed Biology), St. Petersburg: BIN Ross. Akad. Nauk, 1999.

    Google Scholar 

  • Nover, L., Neumann, D., Scharf, K.-D., Heat Shock and Other Stress Response Systems of Plants. Berlin: Springer, 1989.

    Google Scholar 

  • Rapacz, M., Gasior, D., Zwierzykowski, Z., et al., Changes in Cold Tolerance and the Mechanisms of Acclimation of Photosystem II to Cold Hardening Generated by Anther Culture of Festuca pratensis × Lolium multifolium Cultivars, New Phytologist, 2004, vol. 162, pp. 105–114.

    Article  CAS  Google Scholar 

  • Rizza, F., Pagani, D., Stanca, A.M., and Cattivelli, L., Use of Chlorophyll Fluorescence to Evaluate the Cold Acclimation and Freezing Tolerance of Winter and Spring Oats, Plant Breeding, 2001, vol. 120, pp. 389–396.

    Article  Google Scholar 

  • Schmidt, J.E., Schmitt, J.M., Kaiser, W.M., and Hincha, D.K., Salt Treatment Induces Frost Hardening in Leaves and Isolated Thylakoids from Spinach, Planta., 1986, vol. 168, pp. 50–55.

    Article  CAS  Google Scholar 

  • Strand, A., Foyer, C.H., Gustaffson, P., et al. Altering Flux through the Sucrose Biosynthesis Pathway in Transgenic Arabidopsis thaliana Modifies Photosynthetic Acclimation at Low Temperatures and the Development of Freezing Tolerance, Plant Cell Environ., 2003, vol. 26, pp. 523–535.

    Article  CAS  Google Scholar 

  • Selye, G., Stress bez distressa (Stress without Distress), Moscow: Progress, 1982.

    Google Scholar 

  • Sysoeva, M.I., Markovskaya, E.F., and Nekrasova, T.G., Current Status of the Problem of Short-Term Exposure to Low Temperature on Plant Growth, Uspekhi Sovremen. Biologii, 2001, vol. 121, no. 2, pp. 172–179.

    Google Scholar 

  • Sysoeva, M.I., Sherudilo, E.G., Markovskaya, E.F., et al. Temperature Drop as a Tool for Cold Tolerance Increment in Plants, Plant Growth Regulat. 2005, vol. 46, pp. 189–191.

    Article  CAS  Google Scholar 

  • Thomashow M.F. Role of Cold-Responsive Genes in Plant Freezing Tolerance, Plant Physiol., 1998, vol. 118, pp. 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Thomashow, M.F., Plant Cold Acclimation: Freezing Tolerance Genes and Regulatory Mechanisms, Annu. Rev. Plant Physiol. Mol. Biol., 1999, vol. 50, pp. 571–599.

    Article  CAS  Google Scholar 

  • Timofeev, N.N., Gipobioz i kriobioz. Proshloe, nastoyashchee, budushchee (Hypobiosis and Cryobiosis. Past, Present, and Future), Moscow: Inform-Znaniya, 2005.

    Google Scholar 

  • Titov, A.F., Tolerance of Actively Vegetating Plants to Low and High Temperatures: Variation Patterns and Mechanisms, Extended Abstract of Doctoral (Biol.) Dissertation, Moscow: IFR im. K.A. Timiryazeva Ross. Akad. Nauk, 1989.

    Google Scholar 

  • Tognetti, J.A., Salerno, G.L., Crespi, M.D., and Pontis, H.G., Sucrose and Fructan Metabolism of Different Wheat Cultivars at Chilling Temperaturrs, Physiol. Plant., 1990, vol. 78, pp. 554–559.

    Article  CAS  Google Scholar 

  • Voronova, A.E., Zakalka semyan i rassady teplolyubivykh ovoshchebakhchevykh kul’tur (Hardening of Seeds and Seedlings of Heat-Loving Melons and Gourds), Moscow: Izd-vo MSKh SSSR, 1953.

    Google Scholar 

  • Wanner, L.A. and Junttila, O., Cold-Induced Freezing Tolerance in Arabidopsis, Plant Physiol., 1999, vol. 120, pp. 391–399.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Y., Huang, L, Du, Y., and Yu, J., Greenhouse and Field Cucumber Ecotypes Use Different Mechanisms to Protect Dark Chilling, Functional Plant Biol., 2004, vol. 31, pp. 1215–1223.

    Article  CAS  Google Scholar 

  • Zhuchenko, A.A., Adaptivnyi potentsial kul’turnykh rastenii (Adaptability of Cultivated Plants), Kishinev: Shtiintsa, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Sysoeva.

Additional information

Original Russian Text © E.F. Markovskaya, M.I. Sysoeva, E.G. Sherudilo, 2008, published in Ontogenez, 2008, Vol. 38, No. 5, pp. 323–332.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markovskaya, E.F., Sysoeva, M.I. & Sherudilo, E.G. The effect of daily exposure to low hardening temperature on plant vital activity. Russ J Dev Biol 39, 261–268 (2008). https://doi.org/10.1134/S1062360408050019

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360408050019

Key words

Navigation