Skip to main content
Log in

Synthesis of Gold Nanorods in a Binary Mixture of Cationic Surfactants

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

It has been found that gold nanorods with maxima of longitudinal plasmon resonance at wavelengths of 750–1150 nm can be synthesized in a binary mixture of cetyltrimethylammonium bromide and a benzyl-substituted surfactant. The length of the resulting particles has been shown to depend on the molar ratio between the surfactants and the length of the hydrocarbon chain in the benzyl-substituted surfactant, with this length affecting the properties of the bilayer micellar structure in which the nanorods are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Foss, C.A., Hornyak, G.L., Stockert, J.A., and Martin, C.R., J. Phys. Chem., 1994, vol. 98, p. 2963.

    Article  CAS  Google Scholar 

  2. Yu, Y.-Y., Chang, S.-S., Lee, C.-L., and Wang, C.R.C., J. Phys. Chem. B, 1997, p. 6661.

  3. Berkovitch, N., Ginzburg, P., and Orenstein, M., J. Phys.: Condens. Matter, 2012, vol. 24, p. 073202.

    CAS  Google Scholar 

  4. Liyanage, T., Qamar, A.Z., and Slaughter, G., IEEE Sens. J., 2021, vol. 21, p. 12407.

    Article  CAS  Google Scholar 

  5. Zhou, J., Cao, Z., Panwar, N., Hu, R., Wang, X., Qu, J., Tjin, S.C., Xu, G., and Yong, K.-T., Coord. Chem. Rev., 2017, vol. 352, p. 15.

    Article  CAS  Google Scholar 

  6. Sagar, V. and Nair, M., Expert Opin. Drug Deliv., 2018, vol. 15, p. 137.

    Article  CAS  Google Scholar 

  7. Pan, S.L., Chen, M., and Li, H.L., Colloids Surf., A, 2001, vol. 180, p. 55.

    Article  CAS  Google Scholar 

  8. Spirin, M.G., Brichkin, S.B., and Razumov, V.F., High Energy Chem., 2010, vol. 44, p. 52.

    Article  CAS  Google Scholar 

  9. Jana, N.R., Gearheart, L., and Murphy, C.J., J. Phys. Chem. B, vol. 105, p. 4065.

  10. Gao, J., Bender, C.M., and Murphy, C.J., Langmuir, 2003, vol. 19, p. 9065.

    Article  CAS  Google Scholar 

  11. Alekseeva, A.V., Bogatyrev, V.A., Khlebtsov, B.N., Mel’nikov, A.G., Dykman, L.A., and Khleb-tsov, N.G., Colloid J., 2006, vol. 68, p. 661.

    Article  CAS  Google Scholar 

  12. Jana, N.R., Gearheart, L., and Murphy, C.J., Adv. Mater., 2001, vol. 13, p. 1389.

    Article  CAS  Google Scholar 

  13. Angelats-Silva, L.M., Asmat-Campos, D., Leon-Leon, H., Wilkinson, K.A., Sánchez-Vaca, D.A., and López-Milla, A., MRS Adv., 2016, vol. 1, p. 2186.

    Article  Google Scholar 

  14. Altansukh, B., Yao, J.-X., and Wang, D., J. Nanosci. Nanotechnol., 2008, vol. 8, p. 1.

    Article  Google Scholar 

  15. Nikoobakht, B. and El-Sayed, M.A., Chem. Mater., 2003, vol. 15, p. 1957.

    Article  CAS  Google Scholar 

  16. Iqbal, M. and Tae, G., J. Nanosci. Nanotechnol., 2006, vol. 6, p. 3355.

    Article  CAS  Google Scholar 

  17. Smith, D.K. and Korgel, B.A., Langmuir, 2008, vol. 24, p. 644.

    Article  CAS  Google Scholar 

  18. Park, K. and Vaia, R.A., Adv. Mater., 2008, vol. 20, p. 3882.

    Article  CAS  Google Scholar 

  19. Iqbal, M., Chung, Y.-I., and Tae, G., J. Mater. Chem., 2007, vol. 17, no. 4, p. 335.

    Article  CAS  Google Scholar 

  20. Ye, X., Jin, L., Caglayan, H., Chen, J., Xing, G., Zheng, C., Doan-Nguyen, V., Kang, Y., Engheta, N., Kagan, C.R., and Murray, C.B., ACS Nano, 2012, vol. 6, p. 2804.

  21. Khlebtsov, B.N., Khanadeev, V.A., Ye, J., Sukhorukov, G.B., and Khlebtsov, N.G., Langmuir, 2014, vol. 30, p. 1696.

    Article  CAS  Google Scholar 

  22. Khanadeev, V.A., Khlebtsov, N.G., Burov, A.M., and Khlebtsov, B.N., Colloid J., 2015, vol. 77, p. 652.

    Article  CAS  Google Scholar 

  23. Ye, X., Zheng, C., Chen, J., Gao, Y., and Murray, C.B., Nano Lett., 2013, vol. 13, p. 765.

    Article  CAS  Google Scholar 

  24. Spirin, M.G., Brichkin, S.B., Yushkov, E.S., and Razumov, V.F., High Energy Chem., 2020, vol. 54, p. 308.

    Article  CAS  Google Scholar 

  25. Vigderman, L. and Zubarev, E.R., Chem. Mater., 2013, vol. 25, p. 1450.

    Article  CAS  Google Scholar 

  26. Kuttner, C., Mayer, M., Dulle, M., Moscoso, A., López-Romero, J.M., Fӧrster, S., Fery, A., Pérez-Juste, J., and Contreras-Cáceres, R., ACS Appl. Mater. Interfaces, 2018, vol. 10, p. 11152.

    Article  CAS  Google Scholar 

  27. Ndokoye, P., Li, X., Zhao, Q., Li, T., Tade, M.O., and Liu, S., J. Colloid Interface Sci., 2016, vol. 462, p. 341.

    Article  CAS  Google Scholar 

  28. Roy, D., Xu, Y., Rajendra, R., Wu, L., Bai, P., and Ballav, N., J. Phys. Chem. Lett., 2020, vol. 11, p. 3211.

    Article  CAS  Google Scholar 

  29. Fan, T. and Wall, G., J. Pharm. Sci., 1993, vol. 82, p. 1172.

    Article  CAS  Google Scholar 

  30. Ozdil, Z.C.C., Spalla, O., Menguy, N., and Testard, F., J. Phys. Chem. C, 2019, vol. 123, p. 25320.

    Article  Google Scholar 

  31. Velikov, A.A., Russ. J. Phys. Chem. A, 2017, vol. 91, p. 1166.

    Article  CAS  Google Scholar 

  32. Farías, T., de Menorval, L.C., Zajac, J., and Rivera, A., Colloids Surf., A, 2009, vol. 345, p. 51.

    Article  Google Scholar 

  33. Wang, D.-S. and Kerker, M., Phys. Rev. B: Condens. Matter Mater. Phys., 1981, vol. 24, p. 1777.

    Article  CAS  Google Scholar 

  34. Chang, S.-S., Shih, C.-W., Chen, C.-D., Lai, W.-C., and Wang, C.R.C., Langmuir, 1999, vol. 15, p. 701.

    Article  CAS  Google Scholar 

  35. Van der Zande, B.M.I., Bohmer, M.R., Fokkink, L.G.J., and Schonenberger, C., J. Phys. Chem. B, 1997, vol. 101, p. 852.

    Article  CAS  Google Scholar 

  36. Johnson, C.J., Dujardin, E., Davis, S.A., Murphy, C.J., and Mann, S., J. Mater. Chem., 2002, vol. 12, p. 1765.

    Article  CAS  Google Scholar 

  37. Liu, M. and Guyot-Sionnest, P., J. Phys. Chem. B, 2005, vol. 109, p. 22192.

    Article  CAS  Google Scholar 

  38. Lohse, S.E. and Murphy, C.J., Chem. Mater., 2013, vol. 25, p. 1250.

    Article  CAS  Google Scholar 

  39. Mehere, A. and Chaure, N.B., Appl. Phys. A: Mater. Sci. Process., 2020, vol. 126, p. 662.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Higher Education and Science of the Russian Federation within the framework of the project “Fundamentals of Spin Technologies and Directed Design of “Smart” Polyfunctional Materials for Spintronics and Molecular Electronics” no. 075-15-2020-779.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Spirin.

Ethics declarations

The authors declare that they have no conflicts of in-terest.

Additional information

Translated by V. Kudrinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spirin, M.G., Brichkin, S.B., Lizunova, A.A. et al. Synthesis of Gold Nanorods in a Binary Mixture of Cationic Surfactants. Colloid J 84, 100–108 (2022). https://doi.org/10.1134/S1061933X22010136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X22010136

Navigation