Skip to main content
Log in

Effect of Low Concentrations of Thrombin on the Dynamic Surface Properties of Fibrinogen Solutions

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The interaction between fibrinogen and thrombin with the formation of fibrin is a key stage in the formation of a blood clot during blood coagulation, with the morphology of the clot being determined by the concentrations of the components. It has previously been shown that, at low thrombin concentrations, long fibrillar aggregates of fibrin are formed. In this paper, we consider the features of the formation of fibrin aggregates in the surface layers of aqueous solutions at relatively low concentrations of both fibrinogen (5 × 10–9–2 × 10–7 M) and thrombin (5–25 U/L). At a low thrombin concentration (5 U/L), nonmonotonic dependences of elasticity are observed probably due to the unfolding of protein macromolecules in the surface layer. At higher enzyme concentrations (10 and 25 U/L), these dependences become monotonic, and the dynamic surface elasticity reaches higher values that exceed those for pure protein solutions. Atomic force microscopic examinations have suggested that this effect is caused by the formation of fibrillar aggregates in the surface layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Janmey, P.A., Winer, J.P., and Weisel, J.W., J. R. Soc. Interface, 2009, vol. 6, no. 30, p. 1.

    Article  CAS  Google Scholar 

  2. Payamyar, P., King, B.T., Öttinger, H.C., and Schluter, A.D., Chem. Commun., 2016, vol. 52, p. 18.

    Article  CAS  Google Scholar 

  3. O'Brien, E.T., Falvo, M.R., Millard, D., Eastwood, B., Taylor, R.M., and Superfine, R., Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, p. 19438.

    Article  CAS  Google Scholar 

  4. Macrae, F.L., Duval, C., Papareddy, P., Baker, S.R., Yuldasheva, N., Kearney, K.J., McPherson, H.R., Asquith, N., Konings, J., Casini, A., Degen, J.L., Connell, S.D., Philippou, H., Wolberg, A.S., Herwald, H., and Ariëns, R.A.S., J. Clin. Invest., 2018, vol. 128, p. 3356.

    Article  Google Scholar 

  5. Weisel, J.W. and Litvinov, R.I., Blood, 2013, vol. 121, p. 1712.

    Article  CAS  Google Scholar 

  6. Zuev, Y.F., Litvinov, R.I., Sitnitsky, A.E., Idiyatullin, B.Z., Bakirova, D.R., Galanakis, D.K., Zhmurov, A., Barsegov, V., and Weisel, J.W., J. Phys. Chem. B, vol. 121, p. 7833.

  7. Scheraga, H.A., Biophys. Chem., 2004, vol. 112, p. 117.

    Article  CAS  Google Scholar 

  8. Zhmurov, A., Kononova, O., Litvinov, R.I., Dima, R.I., Barsegov, V., and Weisel, J.W., J. Am. Chem. Soc., 2012, vol. 134, p. 20396.

    Article  CAS  Google Scholar 

  9. Privalov, P. and Medved, L., J. Mol. Biol., 1982, vol. 159, p. 665.

    Article  CAS  Google Scholar 

  10. Ryan, E.A., Mockros, L.F., Weisel, J.W., and Lorand, L., Biophys. J., 1999, vol. 77, p. 2813.

    Article  CAS  Google Scholar 

  11. Weisel, J.W. and Nagaswami, C., Biophys. J., 1992, vol. 63, p. 111.

    Article  CAS  Google Scholar 

  12. Hämisch, B., Büngeler, A., Kielar, C., Keller, A., Strube, O., and Huber, K., Langmuir, 2019, vol. 35, p. 12113.

    Article  Google Scholar 

  13. Yermolenko, I.S., Lishko, V.K., Ugarova, T.P., and Magonov, S.N., Biomacromolecules, 2011, vol. 12, p. 370.

    Article  CAS  Google Scholar 

  14. Sit, P.S. and Marchant, R.E., Surf. Sci., 2001, vol. 491, p. 421.

    Article  CAS  Google Scholar 

  15. Gorbet, M.B. and Sefton, M.V., Biomater. Silver Jubilee Compend., 2006, vol. 25, p. 219.

    Article  Google Scholar 

  16. Wolberg, A.S., Haemophilia, 2010, vol. 16.

  17. Konings, J., Govers-Riemslag, J.W.P., Philippou, H., Mutch, N.J., Borissoff, J.I., Allan, P., Mohan, S., Tans, G., Ten Cate, H., and Ariëns, R.A.S., Blood, 2011, vol. 118, p. 3942.

    Article  CAS  Google Scholar 

  18. Fogelson, A.L. and Keener, J.P., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2010, vol. 81, p. 051922.

    Article  Google Scholar 

  19. Gu, S.X. and Lentz, S.R., J. Clin. Invest., 2018, vol. 128, p. 3243.

    Article  Google Scholar 

  20. Leslie, D.C., Waterhouse, A., Berthet, J.B., Valentin, T.M., Watters, A.L., Jain, A., Kim, P., Hatton, B.D., Nedder, A., Donovan, K., Super, E.H., Howell, C., Johnson, C.P., Vu, T.L., Bolgen, D.E., Rifai, S., Hansen, A.R., Aizenberg, M., Super, M., Aizenberg, J., and Ingber, D.E., Nat. Biotechnol., 2014, vol. 32, p. 1134.

    Article  CAS  Google Scholar 

  21. Karp, J.M., Sarraf, F., Shoichet, M.S., and Davies, J.E., J. Biomed. Mater. Res., 2004, vol. 71, p. 162.

    Article  Google Scholar 

  22. Ho, W., Tawil, B., Dunn, J.C.Y., and Wu, B.M., Tissue Eng., 2006, vol. 12, p. 1587.

    Article  CAS  Google Scholar 

  23. Milyaeva, O.Y., Bykov, A.G., Campbell, R.A., Loglio, G., Miller, R., and Noskov, B.A., Colloids Surf., A, 2019, vol. 579, p. 123637.

    Article  CAS  Google Scholar 

  24. Milyaeva, O.Y., Bykov, A.G., Campbell, R.A., Loglio, G., Miller, R., and Noskov, B.A., Colloids Surf., A, 2020, vol. 599, p. 124930.

    Article  CAS  Google Scholar 

  25. Milyaeva, O.Y., Gochev, G., Loglio, G., Miller, R., and Noskov, B.A., Colloids Surf., A, 2017, vol. 532, p. 108.

    Article  CAS  Google Scholar 

  26. Noskov, B.A., Curr. Opin. Colloid Interface Sci., 2010, vol. 15, p. 229.

    Article  CAS  Google Scholar 

  27. Noskov, B.A., Bykov, A.G., Gochev, G., Lin, S.Y., Loglio, G., Miller, R., and Milyaeva, O.Y., Adv. Colloid Interface Sci., 2020, vol. 276, p. 102086.

    Article  CAS  Google Scholar 

  28. Noskov, B.A., Adv. Colloid Interface Sci., 2014, vol. 206, p. 222.

    Article  CAS  Google Scholar 

  29. Ariola, F.S., Krishnan, A., and Vogler, E.A., Biomaterials, 2006, vol. 27, p. 3404.

    Article  CAS  Google Scholar 

  30. Hernandez, E.M. and Franses, E.I., Colloids Surf., A, 2003, vol. 214, p. 249.

    Article  CAS  Google Scholar 

  31. Hassan, N., Maldonado-Valderrama, J., Gunning, A.P., Morris, V.J., and Ruso, J.M., J. Phys. Chem. B, vol. 115, p. 6304.

  32. Damodaran, S., Anal. Bioanal. Chem., 2003, vol. 376, p. 182.

    Article  CAS  Google Scholar 

  33. Bykov, A.G., Lin, S.-Y., Loglio, G., Miller, R., and Noskov, B.A., J. Phys. Chem. C, 2009, vol. 113, p. 5664.

    Article  CAS  Google Scholar 

  34. Motschmann, H. and Teppner, R., Novel Methods to Study Interfacial Layers, Mobius, D. and Miller, R., Eds., Amsterdam: Elsevier, 2001, p. 1.

    Google Scholar 

  35. Noskov, B.A., Adv. Colloid Interface Sci., 2014, vol. 206, p. 222.

    Article  CAS  Google Scholar 

  36. Peng, D., Yang, J., Li, J., Tang, C., and Li, B., J. Agric. Food Chem., 2017, vol. 65, p. 10658.

    Article  CAS  Google Scholar 

  37. Jordens, S., Rühs, P.A., Sieber, C., Isa, L., Fischer, P., and Mezzenga, R., Langmuir, 2014, vol. 30, p. 10090.

    Article  CAS  Google Scholar 

  38. Humblet-Hua, N.-P.K., van der Linden, E., and Sagis, L.M.C., Soft Matter, 2013, vol. 9, p. 2154.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Prof. B.A. Noskov for discussing the results of this work. The authors are also grateful to the resource centers of St. Petersburg State University (Center for Optical and Laser Research, Interdisciplinary Resource Center for Nanotechnologies, Center for Methods of Analysis of Substance Composition, Center for Thermogravimetric and Calorimetric Research Methods, and Center for Diagnostics of Functional Materials for Medicine, Pharmacology and Nanoelectronics) for the possibility to use their equipment.

Funding

This work was supported by the Grant from the President of the Russian Federation for State Support of Young Russian Scientists (project no. MK-2176.2021.1.3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Milyaeva.

Ethics declarations

The authors declare that they have no conflicts of inte-rest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milyaeva, O.Y., Rafikova, A.R. Effect of Low Concentrations of Thrombin on the Dynamic Surface Properties of Fibrinogen Solutions. Colloid J 84, 55–63 (2022). https://doi.org/10.1134/S1061933X22010070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X22010070

Navigation