Skip to main content
Log in

Computer Simulation of Luminophore Solubilization in Reverse Micelles

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The solubilization of ionic (sodium naphthalene-2,6-disulfonate) and nonionic (diethyl 2,5-dihydroxyterephthalate) organic luminophores in water–isooctane–NaАОТ (sodium 1,4-bis[(2-ethylhexyl) oxy]-1,4-dioxybutane-2-sulfonate) reverse micelles is simulated by the molecular dynamics method. In a stationary state, the localization of luminophore molecules in a micelle appears to be the same irrespective of their initial positions in the system. The position and orientation of solubilized luminophores relative to a reverse micelle depend on the hydrophobicity and the capability for dissociation of the functional groups of their molecules, the size of the reverse micelle, and the structure of its electrical double layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, J.L., Han, B.X., Liu, M.H., Liu, D.X., Dong, Z.X., Liu, J., Li, D., Wang, J., Dong, B.Z., Zhao, H., and Rong, L.X., J. Phys. Chem. B, 2003, vol. 107, p. 3679.

    Article  CAS  Google Scholar 

  2. Caponetti, E., Chillura-Martino, D., Ferrante, F., Pedone, L., Ruggirello, A., and Liveri, V.T., Langmuir 2003, vol. 19, p. 4913.

    Article  CAS  Google Scholar 

  3. Oliveira, C.S., Bastos, E.L., Duarte, E.L., Itri, R., and Baptista, M.S., Langmuir 2006, vol. 22, p. 8718.

    Article  CAS  PubMed  Google Scholar 

  4. Aoudia, M. and Rodgers, M.A.J., J. Phys. Chem. B, 2003, vol. 107, p. 6194.

    Article  Google Scholar 

  5. Correa, N.M., Pires, P.A.R., Silber, J.J., and El Seoud, O.A., J. Phys. Chem. B, 2005, vol. 109, p. 21209.

    Article  CAS  PubMed  Google Scholar 

  6. Garcia-Rio, L., Mejuto, J.C., Ciri, R., Blagoeva, I.B., Leis, J.R., and Ruasse, M.F., J. Phys. Chem. B, 1999, vol. 103, p. 4997.

    Article  CAS  Google Scholar 

  7. Verbeeck, A. and Deschryver, F.C., Langmuir 1987, vol. 3, p. 494.

    Article  CAS  Google Scholar 

  8. Hasegawa, M., Sugimura, T., Shindo, Y., and Kitahara, A., Colloids Surf. A 1996, vol. 109, p. 305.

    Article  CAS  Google Scholar 

  9. Satpati, A.K., Kumbhakar, M., Nath, S., and Pal, H., ChemPhysChem 2009, vol. 10, p. 2966.

    Article  CAS  PubMed  Google Scholar 

  10. Zhu, R., Lu, R., and Yu, A., Phys. Chem. Chem. Phys. 2011, vol. 13, p. 20844.

    Article  CAS  PubMed  Google Scholar 

  11. Aliaga, C., Bravo-Moraga, F., Gonzalez-Nilo, D., Marquez, S., Luehr, S., Mena, G., and Caroli Rezende, M., Food Chem. 2016, vol. 192, p. 395.

    Article  CAS  PubMed  Google Scholar 

  12. Gao, F., Yan, H., and Yuan, S., Mol. Simul. 2013, vol. 39, p. 1042.

    Article  CAS  Google Scholar 

  13. Allen, N.S., Rivalle, G., Edge, M., Roberts, I., and Fagerburg, D.R., Polym. Degrad. Stab. 2000, vol. 67, p. 325.

    Article  CAS  Google Scholar 

  14. Oostenbrink, C., Villa, A., Mark, A.E., and Van Gunsteren, W.F., J. Comput. Chem., 2004, vol. 25, p. 1656.

    Article  CAS  Google Scholar 

  15. Nevidimov, A.V. and Razumov, V.F., Mol. Phys. 2009, vol. 107, p. 2169.

    Article  CAS  Google Scholar 

  16. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., and Hermans, J., in Intermolecular Forces, Pullman, B., Ed., Dordrecht: Reidel, 1981. p. 331.

  17. Abraham, M.J., Murtola, T., Schulz, R., Pall, S., Smith, J.C., Hess, B., and Lindahl, E., SoftwareX 2015, vols. 1–2, p. 19.

    Article  Google Scholar 

  18. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., and Pedersen, L.G., J. Chem. Phys., 1995, vol. 103, p. 8577.

    Article  CAS  Google Scholar 

  19. Humphrey, W., Dalke, A., and Schulten, K., J. Mol. Graph. Model., 1996, vol. 14, p. 33.

    Article  CAS  Google Scholar 

  20. Muenz, M. and Biggin, P.C., J. Chem. Inf. Model., 2012, vol. 52, p. 255.

    Article  CAS  Google Scholar 

  21. Kopanichuk, I.V., Vanin, A.A., and Brodskaya, E.N., Colloid J. 2017, vol. 79, p. 328.

    Article  CAS  Google Scholar 

  22. Brodskaya, E.N. and Zacharov, V.V., J. Chem. Phys., 1995, vol. 102, p. 4595.

    Article  CAS  Google Scholar 

  23. Brodskaya, E.N. and Vanin, A.A., J. Chem. Phys., 2015, vol. 143, p. 044707.

    Article  CAS  PubMed  Google Scholar 

  24. Eicke, H.F. and Rehak, J., Helv. Chim. Acta 1976, vol. 59, p. 2883.

    Article  CAS  Google Scholar 

  25. Maitra, A., J. Phys. Chem., 1984, vol. 88, p. 5122.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kopanichuk.

Additional information

Original Russian Text © I.V. Kopanichuk, A.A. Vanin, A. Ostras’, E.N. Brodskaya, 2018, published in Kolloidnyi Zhurnal, 2018, Vol. 80, No. 3, pp. 284–289.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopanichuk, I.V., Vanin, A.A., Ostras’, A. et al. Computer Simulation of Luminophore Solubilization in Reverse Micelles. Colloid J 80, 266–271 (2018). https://doi.org/10.1134/S1061933X18030067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X18030067

Navigation