Skip to main content
Log in

Elastic properties of the (001) face of xenon crystals

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

In this work we investigated the elastic properties of the (001) face of xenon crystal. The slabs (twodimensional crystals) defined by (001) planes are generated, their structures are optimized and the slabs thermodynamic functions in excess to the crystal bulk calculated. The calculations are based on the Lennard-Jones 6−12 force field, classical elasticity theory and surface thermodynamics. In this work, the number of planes undergoing relaxation is not a priori constrained but it follows from the minimization of the free energy of the slabs and of the bulk, in respect to atomic positions. The value of the surface free energy is calculated as a function of the homogeneous strain of the 2D (001) cell measured relatively to the cell of the stable 3D crystal. At 0 K, when strain is not applied, the specific surface free energy is about 0.064 Jm-2 and decreases by about 6% at 50 K. The surface stress is positive amounting to 0.010 Jm-2 at 0 K, and it decreases by about 50% at 50 K. We find that the surface stress can be released by a reorganization of the interatomic distances at the crystal surfaces. The surface excess mean value of the slab elastic constants at 0 K is small (0.012 GPa) and it decreases by about 35% at 50 K. The method proposed can be alternative to molecular dynamics simulations in order to assess the excess surface properties of materials having a complex structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Natta, G. and Nasini, A.G., Nature (London), 1930, vol. 22, p. 48.

    Google Scholar 

  2. Tsakiris, N., Argyrakis, P., Avramov, I., Bocker, C., and Russel, C., Europhys. Lett., 2010, vol. 89, p. 18004.

    Article  Google Scholar 

  3. Müller, P. and Kern, R., Surf. Sci., 2000, vol. 457, p. 229.

    Article  Google Scholar 

  4. Wallace, D.C., Thermodynamics of Crystals, New York Wiley, 1972.

    Google Scholar 

  5. Keysef, R.J. and Venables, J.A., J. Phys. C: Solid State Phys., 1985, vol. 18, p. 4435.

    Article  Google Scholar 

  6. Gibbs, J.W., The Scientific Papers of J. Willard Gibbs. Thermodynamics, vol. 1, New York Dover, 1961.

  7. Herring, C., in The Physics of Powder Metallurgy, Kingston, W.E, Ed., New York: McGraw-Hill, 1951, p. 143.

  8. Herring, C., in Structure and Properties of Solid Surfaces, Gomer, R. and Smith, C.S., Eds., Chicago: Univ. of Chicago Press, 1953, p. 5.

  9. Rusanov, A.I., Surf. Sci. Rep., 2005, vol. 58, p. 111.

    Article  CAS  Google Scholar 

  10. Rusanov, A.I., Shchekin, A.K., and Tatyanenko, D.V., J. Chem. Phys., 2009, vol. 131, p. 1.

    Google Scholar 

  11. Shuttleworth, R., Proc. Phys. Soc. London A, 1949, vol. 62, p. 167.

    Article  Google Scholar 

  12. Shuttleworth, R., Proc. Phys. Soc. London A, 1950, vol. 63, p 444.

  13. Eriksson, J.C., Surf. Sci., 1969, vol. 14, p. 221.

    Article  CAS  Google Scholar 

  14. Eriksson, J.C. and Henriksson, U., Colloid J., 2012, vol. 74, p. 186.

    Article  CAS  Google Scholar 

  15. Allen, R.E. and De Wette, F.W., J. Chem. Phys., 1969, vol. 51, p. 4820.

    Article  CAS  Google Scholar 

  16. Allen, R.E. and De Wette, F.W., Phys. Rev., 1969, vol. 179, p. 873.

    Article  CAS  Google Scholar 

  17. Benson, G.C. and Claxton, T.A., J. Phys. Chem. Solids, 1964, vol. 25, p. 367.

    Article  CAS  Google Scholar 

  18. Packard, J.R. and Swenson, C.A., J. Phys. Chem. Solids, 1963, vol. 24, p. 1405.

    Article  CAS  Google Scholar 

  19. Gale, J.D., J. Chem. Soc., Faraday Trans., 1997, vol. 93, p. 629.

    Article  CAS  Google Scholar 

  20. Fleming, S. and Rohl, A., Z. Kryst., 2005, vol. 220, p. 580.

    CAS  Google Scholar 

  21. Bruno, M. and Prencipe, M., Cryst. Eng. Commun., 2013, vol. 15, p. 6736.

    Article  CAS  Google Scholar 

  22. Müller, P. and Saul, A., Surf. Sci. Rep., 2004, vol. 54, p. 157.

    Article  Google Scholar 

  23. Defay, R. and Prigogine, I., Tension uperficielle et adsorption, Liege Desoer, 1951.

    Google Scholar 

  24. Guggenheim, E.A., Thermodynamics, Amsterdam North-Holland, 1952.

    Google Scholar 

  25. Bruno, M., Aquilano, D., Pastero, L., and Prencipe, M., Cryst. Growth Des., 2008, vol. 8, p. 2163.

    Article  CAS  Google Scholar 

  26. Rubbo, M., Bruno, M., and Prencipe, M., Cryst. Growth Des., 2009, vol. 9, p. 404.

    Article  CAS  Google Scholar 

  27. Bruno, M., Aquilano, D., and Prencipe, M., Cryst. Growth Des., 2009, vol. 9, p. 1912.

    Article  CAS  Google Scholar 

  28. Sutton, A.P. and Balluffi, R.W., Interfaces in Crystalline Materials, Oxford Clarendon, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Rubbo.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubbo, M., Bruno, M. Elastic properties of the (001) face of xenon crystals. Colloid J 78, 658–668 (2016). https://doi.org/10.1134/S1061933X16050148

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X16050148

Navigation