Skip to main content
Log in

Explicit determination of certain periodic motions of a generalized two-field gyrostat

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

The case of motion of a generalized two-field gyrostat found by V. V. Sokolov and A.V. Tsiganov is known as a Liouville integrable Hamiltonian system with three degrees of freedom. For this system, we find some special periodic motions at which the momentum mapping has rank 1. For such motions, all phase variables can be expressed in terms of algebraic functions of a single auxiliary variable and a set of constants. This auxiliary variable satisfies a differential equation which can be integrated in elliptic functions of time. As an application, the explicit formulas of characteristic exponents for determining the Williamson type of the special periodic motions are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Bolsinov, A. V. Borisov, and I. S. Mamaev, “Topology and Stability of Integrable Systems,” Russian Math. Surveys 65 (2), 259–318 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. A. V. Bolsinov, A. V. Borisov, and I. S. Mamaev, “Bifurcation Analysis and the Conley Index in Mechanics,” Regul. Chaotic Dyn. 17 (5), 451–478 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. M. P. Kharlamov, “Regions of Existence of Critical Motions of the Generalized Kowalewski Top and Bifurcation Diagrams,” Mekh. Tverd. Tela 36, 13–22 (2006).

    Google Scholar 

  4. M. P. Kharlamov, “Critical Set and Bifurcation Diagram on the Problem of Motion of the Kowalewski Top in Two Fields,” Mekh. Tverd. Tela 34, 47–58 (2004).

    Google Scholar 

  5. O. I. Bogoyavlensky, “Two Integrable Cases of a Rigid Body Dynamics in the Field of Force,” Dokl. Akad. Nauk USSR 275 (6), 1359–1363 (1984).

    ADS  Google Scholar 

  6. D. B. Zotev, “Fomenko–Zieschang Invariant in the Bogoyavlenskyi Case,” Regul. Chaotic Dyn. 5 (4), 437–458 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  7. M. P. Kharlamov, “Special Periodic Solutions of the Generalized Delone Case,” Mekh. Tverd. Tela 36, 23–33 (2006).

    Google Scholar 

  8. P. E. Ryabov, “Explicit Integration and the Topology of the D.N.Goryachev Case,” Dokl. Math. 84 (1), 502–505 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  9. O. I. Bogoyavlensky, “Euler Equations on Finite-Dimension Lie Algebras Arising in Physical Problems,” Comm. Math. Phys. 95 (3), 307–315 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  10. V. V. Sokolov and A. V. Tsiganov, “Lax Pairs for the Deformed Kowalevski and Goryachev–Chaplygin Tops,” Theoret. and Math. Phys. 131 (1), 543–549 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  11. M. P. Kharlamov, “Bifurcation Diagrams of the Kowalevski Top in Two Constant Fields,” Regul. Chaotic Dyn. 10 (4), 381–398 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. A. G. Reyman and M. A. Semenov-Tian-Shansky, “Lax Representation with a Spectral Parameter for the Kowalewski Top and Its Generalizations,” Lett. Math. Phys. 14 (1), 55–61 (1987).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. P. E. Ryabov, “Phase Topology of One Irreducible Integrable Problem in the Dynamics of a Rigid Body,” Theoret. and Math. Phys. 176 (2), 1000–1015 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. A. I. Bobenko, A. G. Reyman, and M. A. Semenov-Tian-Shansky, “The Kowalewski Top 99 Years Later: a Lax Pair, Generalizations and Explicit Solutions,” Comm. Math. Phys. 122 (2), 321–354 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. M. P. Kharlamov, “Periodic Motions of the Kowalevski Gyrostat in Two Constant Fields,” J. Phys. A: Math. Theoret. 41 (27), 275–307 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  16. H. M. Yehia, “On Certain Integrable Motions of a Rigid Body Acted upon by Gravity and Magnetic Fields,” Int. J. Nonlinear Mech. 36, 1173–1175 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. P. V. Kharlamov, “One Case of Integrability of the Equations of the Motion of a Rigid Body Having a Fixed Point,” Mekh. Tverd. Tela 3, 57–64 (1971).

    Google Scholar 

  18. E. I. Kharlamova and P. V. Kharlamov, “New Solution of the Differential Equations of the Motion of a Body Having a Fixed Point under the Conditions of S. V. Kovalevskaya,” Mekh. Tverd. Tela 189 (5), 967–968 (1969).

    Google Scholar 

  19. S. V. Sokolov and S. M. Ramodanov, “Falling Motion of a Circular Cylinder Interacting Dynamically with a Point Vortex,” Regul. Chaotic Dyn. 18 (1), 184–193 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. S. P. Bezglasnyi, “Stabilization of Stationary Motions of a Gyrostat with a Cavity Filled with Viscous Fluid,” Russ. Aeronaut. 57 (4), 333–338 (2014).

    Article  Google Scholar 

  21. P. E. Ryabov, A. A. Oshemkov, and S. V. Sokolov, “The Integrable Case of Adler–van Moerbeke. Discriminant Set and Bifurcation Diagram,” Regul. Chaotic Dyn. 21 (5), 581–592 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. R. Akbarzadeh and G. Haghighatdoost, “The Topology of Liouville Foliation for the Borisov–Mamaev–Sokolov Integrable Case on the Lie Algebra so(4),” Regul. Chaotic Dyn. 20 (3), 317–344 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. R. Akbarzadeh, “Topological Analysis Corresponding to the Borisov–Mamaev–Sokolov Integrable System on the Lie Algebra so(4),” Regul. Chaotic Dyn. 21 (4), 1–17 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. I. A. Bizyaev, A. V. Borisov, and I. S. Mamaev, “Dynamics of the Chaplygin Sleigh on a Cylinder,” Regul. Chaotic Dyn. 21 (1), 136–146 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. A. V. Borisov, I. S. Mamaev, and I. A. Bizyaev, “The Spatial Problem of 2 Bodies on a Sphere. Reduction and Stochasticity,” Regul. Chaotic Dyn. 21 (5), 556–580 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. A. V. Borisov and V. G. Lebedev, “Dynamics of Three Vortices on a Plane and a Sphere–II. General Compact Case,” Regul. Chaotic Dyn. 3 (2), 99–114 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  27. P. E. Ryabov, “New Invariant Relations for the Generalized Two-Field Gyrostat,” J. Geom. Phys. 87, 415–421 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Oshemkov.

Additional information

This work is partially supported by the grants of RFBR Nos. 16-01-00170, 16-01-00809, 16-01-00378, 17-01-00846 and the grant of the President of the Russian Federation for State Support of Leading Scientific Schools no. 7962.2016.1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oshemkov, A.A., Ryabov, P.E. & Sokolov, S.V. Explicit determination of certain periodic motions of a generalized two-field gyrostat. Russ. J. Math. Phys. 24, 517–525 (2017). https://doi.org/10.1134/S1061920817040100

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920817040100

Navigation