Skip to main content
Log in

Stokes–Leibenson problem for Hele-Shaw flow: a critical set in the space of contours

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

The Stokes–Leibenson problem for Hele-Shaw flow is reformulated as a Cauchy problem of a nonlinear integro-differential equation with respect to functions a and b, linked by the Hilbert transform. The function a expresses the evolution of the coefficient longitudinal strain of the free boundary and b is the evolution of the tangent tilt of this contour. These functions directly reflect changes of geometric characteristics of the free boundary of higher order than the evolution of the contour point obtained by the classical Galin–Kochina equation. That is why we managed to uncover the reason of the absence of solutions in the sink-case if the initial contour is not analytic at at least one point, to prove existence and uniqueness theorems, and also to reveal a certain critical set in the space of contours. This set contains one attractive point in the source-case corresponding to a circular contour centered at the source-point. The main object of this work is the analysis of the discrete model of the problem. This model, called quasi-contour, is formulated in terms of functions corresponding to a and b of our integro-differential equation. This quasi-contour model provides numerical experiments which confirm the theoretical properties mentioned above, especially the existence of a critical subset of co-dimension 1 in space of quasi-contours. This subset contains one attractive point in the source-case corresponding to a regular quasi-contour centered at the source-point. The main contribution of our quasi-contour model concerns the sink-case: numerical experiments show that the above subset is attractive. Furthermore, this discrete model allows to extend previous results obtained by using complex analysis. We also provide numerical experiments linked to fingering effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Almgren, “Crystalline Saffman–Taylor Fingers,” SIAM J. Appl. Math. 55, 1511–1535 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Antontsev, A. M. Meirmanov, and V. Yurinsky, Hele-Shaw Flow in Two Dimensions: Global-In-Time Classical Solutions (Universidade da Beira Interior, Portugal, preprint 6, 1999).

    Google Scholar 

  3. B. V. Bazalii, “On a Proof of the Classical Solvability of the Hele-Shaw Problem with a Free Boundary,” Ukrainian Math. J. 50 (11), 1452–1462 (1998).

    Article  MathSciNet  Google Scholar 

  4. G. Caginalp, “Stefan and Hele-Shaw Type Models as Asymptotic Limits of the Phase-Field Equations,” Phys. Rev. A 39 (11), 5887–5896 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. G. Caginalp and X. Chen, “Convergence of the Phase Field Model to Its Sharp Interface Limits,” European J. Appl. Math. 9 (4), 417–445 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. S. Demidov, “A Polygonal Model for the Hele-Shaw Flow,” Uspekhi Mat. Nauk. 4, 195–196 (1998).

    MathSciNet  Google Scholar 

  7. A. S. Demidov, “On Evolution of a Small Perturbation of a Circle in a Problem for Hele-Shaw Flows,” Russian Math. Surveys 57 (6), 1212–1214 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. A. S. Demidov, “Evolution of the Perturbation of a Circle in the Stokes–Leibenson Problem for a Hele-Shaw Flow,” Sovrem. Mat. Prilozh. No. 2, Differ. Uravn. Chast. Proizvod. (2003), 3–24 [J. Math. Sci. (N. Y.) 123 (5), 4381–4403 (2004)].

    MathSciNet  MATH  Google Scholar 

  9. A. S. Demidov, “Evolution of the Perturbation of a Circle in the Stokes–Leibenson Problem for a Hele- Shaw Flow. II,” Sovrem. Mat. Prilozh. No. 24, Din. Sist. i Optim. (2005), 51–65 [J. Math. Sci. (N. Y.) 139 (6), 7064–7078 (2006)].

    MathSciNet  MATH  Google Scholar 

  10. A. S. Demidov, “A Functional-Geometric Method for Solving Problems with a Free Boundary for Harmonic Functions,” Uspekhi Mat. Nauk 65 (1), 3–96 (2010) [Russian Math. Surveys 65 (1), 1–94 (2010)].

    Article  MathSciNet  Google Scholar 

  11. A. S. Demidov and J.-P. Lohéac, “The Stokes–Leibenson Problem for Hele-Shaw Flows,” Patterns and Waves (Saint Petersburg, 2002), AkademPrint, St. Petersburg, 103–124 (2003).

    Google Scholar 

  12. A. S. Demidov and J.-P. Lohéac, “Numerical Scheme for Laplacian Growth Models Based on the Helmholtz–Kirchhoff Method,” Analysis and Mathematical Physics, Trends Math., Birkhäuser, Basel, 107–114 (2009).

    Chapter  Google Scholar 

  13. A. S. Demidov, J.-P. Lohéac, and V. Runge, “Problème de Cauchy pour l’approximation de Stokes–Leibenson d’une cellule de Hele–Shaw en coin,” Comptes Rendus Mécanique 341 (11–12), 755–759 (2013).

    Article  Google Scholar 

  14. A. S. Demidov and O. A. Vasilieva, “The Finite Point Model of the Stokes–Leibenson Problem for the Hele-Shaw Flow,” Fundam. Prikl. Mat. 1, 67–84 (1999).

    MathSciNet  MATH  Google Scholar 

  15. J. Escher and G. Simonett, “Classical Solutions of Multidimensional Hele-Shaw Models,” SIAM J. Math. Anal. 28, 1028–1047 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  16. F. D. Gakhov, Boundary Value Problems (Oxford, NY, Pergamon Press, 1966).

    MATH  Google Scholar 

  17. L. A. Galin, “Unsteady Filtration with a Free Surface,” Dokl. Akad. Nauk SSSR 47, 250–253 (1945).

    MathSciNet  MATH  Google Scholar 

  18. B. Gustafsson, “Applications of Variational Inequalities to a Moving Boundary Problem for Hele-Shaw Flows,” SIAM J. Math. Anal. 16 (2), 279–300 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Gustafsson and A. Vasil’ev, Conformal and Potential Analysis in Hele-Shaw Cells (Birkhäuser Verlag, Basel, 2006).

    MATH  Google Scholar 

  20. Yu. E. Hohlov and S. D. Howison, “On the Classification of Solutions to the Zero-Surface-Tension Model for Hele-Shaw Free Boundary Flows,” Quart. Appl. Math. 51 (4), 777–789 (1993).

    MathSciNet  MATH  Google Scholar 

  21. Hele-Shaw Flows and Related Problems, S. D. Howison and J. R. Ockendon, eds., European J. Appl. Math. 10 (6), 511–709 (1999).

    Google Scholar 

  22. H. Helmholtz, Über discontinuirliche Flussigkeitsbewegungen (Monatsber. Konigl.Akad.Wissenschaften, Berlin, 1868).

    Google Scholar 

  23. Yu. E. Khokhlov and S. D. Howison, “On the Classification of Solutions to the Zero-Surface-Tension Model for Hele-Shaw Free Boundary Flow,” Quart. Appl. Math. 51 (4), 777–789 (1993).

    MathSciNet  MATH  Google Scholar 

  24. G. Kirchhoff, Zür Theorie freier Flussigkeitsstrahlen (Borchardt’s J., Bd. 70, 1869).

    Google Scholar 

  25. P. Ya. Kochina, Selected Works. Hydrodynamics and Filtration Theory (Nauka, Moscow, 1991) [in Russian].

    MATH  Google Scholar 

  26. P. P. Kufarev, “A Solution of the Boundary Problem for an Oil Well in a Circle,” Doklady Akad. Nauk SSSR (N. S.) 60, 1333–1334 (1948) [in Russian].

    MathSciNet  Google Scholar 

  27. H. Lamb, Hydrodynamics. (Cambridge Univ. Press., 6th ed., Cambridge, 1932).

    MATH  Google Scholar 

  28. L. S. Leibenson, Oil Producing Mechanics, Part II (Moscow, Neftizdat, 1934) [in Russian].

    MATH  Google Scholar 

  29. A. M. Meirmanov and B. Zaltzman, “Global in Time Solution to the Hele- Shaw Problem with a Change of Topology,” European J. Appl. Math. 13 (4), 431–447 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  30. N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity [in Russian] (Leningrad, AN SSSR, 1949; Noordhoff Int. Publishing, Leiden, 1977).

    Book  Google Scholar 

  31. J. R. Ockendon and S. D. Howison, “Kochina and Hele-Shaw in Modern Mathematics, Natural Sciences and Technology,” J. Appl. Math. Mech. 66 (3), 505–512 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  32. P. I. Plotnikov and V. N. Starovöikov, “The Stefan Problem with Surface Tension as a Limit of the Phase Field Model,” Differ. Uravn. 29 (3), 461–471 (1993) [Differ. Equ. 29 (3), 395–404 (1993)].

    MathSciNet  Google Scholar 

  33. P. Ya. Polubarinova-Kochina, “On the Motion of the Oil Contour,” Dokl. Akad. Nauk SSSR 47, 254–257 (1945) [in Russian].

    Google Scholar 

  34. P. Ya. Polubarinova-Kochina, “Concerning Unsteady Motions in the Theory of Filtration,” Prikl. Mat. Mech. 9, 79–90 (1945) [in Russian].

    MathSciNet  Google Scholar 

  35. M. Reissig and L. Wolfersdorf, “A Simplified Proof for a Moving Boundary Problem for Hele-Shaw Flows in the Plane,” Ark. Mat. 31 (1), 101–116 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Sakai, “Regularity of a Boundary Having a Schwarz Function,” Acta Math. 166, 263–297 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Sakai, “Regularity of Free Boundaries in Two Dimensions,” Ann. Sc. Norm. Super. Pisa Cl. Sci. 20, 323–339 (1993).

    MathSciNet  MATH  Google Scholar 

  38. H. S. Shapiro, The Schwarz Function and Its Generalization to Higher Dimensions (University of Arkansas lecture notes in the mathematical sciences, 9, New-York, John Wiley & Sons Inc, 1992).

    MATH  Google Scholar 

  39. G. G. Stokes, Mathematical Proof of the Identity of the Stream-Lines Obtained by Means of Viscous Film with Those of a Perfect Fluid Moving in Two Dimensions (Brit. Ass. Rep., 143 (Papers, V, 278) 1898).

    MATH  Google Scholar 

  40. Yu. P. Vinogradov and P. P. Kufarev, “On a Problem of Filtration,” Prikl. Mat. Mech. 12, 181–198, (1948) [in Russian].

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Demidov or V. Runge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demidov, A.S., Lohéac, J.P. & Runge, V. Stokes–Leibenson problem for Hele-Shaw flow: a critical set in the space of contours. Russ. J. Math. Phys. 23, 35–55 (2016). https://doi.org/10.1134/S1061920816010039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920816010039

Keywords

Navigation