Skip to main content
Log in

The stochastic Gross-Pitaevskii equation and some applications

  • Physics of Cold Trapped Atoms
  • Published:
Laser Physics

Abstract

The stochastic Gross-Pitaevskii equation represents a versatile approach for studying the dynamics of trapped degenerate ultracold Bose gases in the presence of large phase and density fluctuations. Following a brief review of the original formulation of Stoof, which highlights the benefits of this approach and its relation to alternative theories, we present selected applications for the dynamics of effectively one-dimensional systems, and briefly discuss the generalization to two-dimensional systems, highlighting certain potential pitfalls in their numerical implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Dalfovo, S. Giorgini, P. L. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999).

    Article  ADS  Google Scholar 

  2. I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. (2008, in press).

  3. Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment, Ed. by P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer, New York, 2008).

    MATH  Google Scholar 

  4. A. Gorlitz, J. M. Vogels, A. E. Leanhardt, C. Raman, T. L. Gustavson, J. R. Abo-Shaeer, A. P. Chikkatur, S. Gupta, S. Inouye, T. Rosenband, and W. Ketterle, Phys. Rev. Lett. 87, 130420 (2001).

    Google Scholar 

  5. H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, Phys. Rev. Lett. 87, 230401 (2001).

    Google Scholar 

  6. Z. Hadzibabic, P. Kruger, M. Cheneau, B. Battelier, and J. Dalibard, Nature 441, 1118 (2006).

    Article  ADS  Google Scholar 

  7. B. Jackson and E. Zaremba, Phys. Rev. Lett. 87, 100404 (2001).

    Google Scholar 

  8. B. Jackson and E. Zaremba, Phys. Rev. Lett. 89, 150402 (2002).

    Google Scholar 

  9. B. Jackson and E. Zaremba, Phys. Rev. Lett. 88, 180402 (2002).

    Google Scholar 

  10. B. Jackson and E. Zaremba, Laser Phys. 12, 93 (2002).

    Google Scholar 

  11. N. P. Proukakis, Beyond the Gross-Pitaevskii Mean Field in Ref. [3]; arXiv:0706.3541v1.

    Google Scholar 

  12. N. P. Proukakis and B. Jackson, J. Phys. B 41, 203002 (2008).

    Google Scholar 

  13. V. I. Yukalov, Las. Phys. Lett. 4, 632 (2007).

    Article  Google Scholar 

  14. E. Zaremba, T. Nikuni, and A. Griffin, J. Low Temp. Phys. 116, 277 (1999).

    Article  Google Scholar 

  15. M. J. Bijlsma, E. Zaremba, and H. T. C. Stoof, Phys. Rev. A 62, 063609 (2000).

    Google Scholar 

  16. R. Walser, J. Williams, J. Cooper, and M. Holland, Phys. Rev. A 59, 3878 (1999).

    Article  ADS  Google Scholar 

  17. N. P. Proukakis, J. Phys. B 34, 4737 (2001).

    Article  ADS  Google Scholar 

  18. T. R. Kirkpatrick and J. R. Dorfman, Phys. Rev. A 28, 2576 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  19. T. R. Kirkpatrick and J. R. Dorfman, J. Low Temp. Phys. 58, 301 (1985).

    Article  ADS  Google Scholar 

  20. T. R. Kirkpatrick and J. R. Dorfman, J. Low Temp. Phys. 58, 399 (1985).

    Article  ADS  Google Scholar 

  21. S. Richard, F. Gerbier, J. H. Thywissen, M. Hugbart, P. Bouyer, and A. Aspect, Phys. Rev. Lett. 91, 010405 (2003).

    Google Scholar 

  22. D. Hellweg, L. Cacciapuoti, M. Kottke, T. Schulte, K. Sengstock, W. Ertmer, and J. J. Arlt, Phys. Rev. Lett. 91, 010406 (2003).

    Google Scholar 

  23. L. Cacciapuoti, D. Hellweg, M. Kottke, T. Schulte, W. Ertmer, J. J. Arlt, K. Sengstock, and L. Santos, Phys. Rev. A 68, 053612 (2003).

    Google Scholar 

  24. D. S. Petrov, G. V. Shlyapnikov, and J. T. M. Walraven, Phys. Rev. Lett. 85, 3745 (2000).

    Article  ADS  Google Scholar 

  25. J. O. Andersen, U. Al Khawaja, and H. T. C. Stoof, Phys. Rev. Lett. 88, 070407 (2002).

  26. S. A. Gardiner and S. A. Morgan, Phys. Rev. A 75, 043621 (2007).

    Google Scholar 

  27. M. D. Girardeau and R. Arnowitt, Phys. Rev. 113, 755 (1959).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. C. W. Gardiner, Phys. Rev. A 56, 1414 (1997).

    Article  ADS  Google Scholar 

  29. Y. Castin and R. Dum, Phys. Rev. A 57, 3008 (1998).

    Article  ADS  Google Scholar 

  30. S. A. Morgan, M. Rusch, D. A. W. Hutchinson, and K. Burnett, Phys. Rev. Lett. 91, 250403 (2003).

    Google Scholar 

  31. Y. Kagan and B. V. Svistunov, Zh. Eksp. Teor. Fiz. 105, 353 (1994) [JETP 78, 187 (1994)].

    Google Scholar 

  32. M. Brewczyk, M. Gajda, and K. Rzazewski, J. Phys. B 40, R1 (2007).

    Article  ADS  Google Scholar 

  33. P. B. Blakie and M. J. Davis, Phys. Rev. A 72, 063608 (2005).

    Google Scholar 

  34. M. J. Davis, S. A. Morgan, and K. Burnett, Phys. Rev. Lett. 87, 160402 (2001).

    Google Scholar 

  35. M. J. Steel, M. K. Olsen, L. I. Plimak, P. D. Drummond, S. M. Tan, M. J. Collett, D. F. Walls, and R. Graham, Phys. Rev. A 58, 4824 (1998).

    Article  ADS  Google Scholar 

  36. A. Sinatra, C. Lobo, and Y. Castin, J. Phys. B 35, 3599 (2002).

    Article  ADS  Google Scholar 

  37. M. J. Davis, R. J. Ballagh, and K. Burnett, J. Phys. B 34, 4487 (2001).

    Article  ADS  Google Scholar 

  38. H. T. C. Stoof, Phys. Rev. Lett. 78, 768 (1997).

    Article  ADS  Google Scholar 

  39. H. T. C. Stoof, J. Low Temp. Phys. 114, 11 (1999).

    Article  Google Scholar 

  40. H. T. C. Stoof and M. J. Bijlsma, J. Low Temp. Phys. 124, 431 (2001).

    Article  Google Scholar 

  41. Duine R A and Stoof H T C 2001 Phys. Rev. A 65, 013603 (2001).

  42. H. T. C. Stoof, in Coherent Atomic Matter Waves, Proc. of the Les Houches Summer School Session 72, 1999, Ed. by R. Kaiser et al. (Springer, Berlin, 2001).

    Google Scholar 

  43. C. W. Gardiner and P. Zoller, Phys. Rev. A 61, 033601 (2000).

    Google Scholar 

  44. M. J. Davis, C. W. Gardiner, and R. J. Ballagh, Phys. Rev. A 62, 063608 (2000).

    Google Scholar 

  45. C. W. Gardiner, J. R. Anglin, and T. I. A. Fudge, J. Phys. B 35, 1555 (2002).

    Article  ADS  Google Scholar 

  46. C. W. Gardiner and M. J. Davis, J. Phys B 36, 4731 (2003).

    Article  ADS  Google Scholar 

  47. R. N. Bisset, M. J. Davis, T. P. Simula, and P. B. Blakie, cond-mat/0804.0286v1.

  48. U. Al Khawaja, J. O. Andersen, N. P. Proukakis, and H. T. C. Stoof, Phys. Rev. A 66, 013615 (2002); Phys. Rev. A 66, 059902(E) (2002).

    Google Scholar 

  49. N. P. Proukakis, Laser Phys. 13, 527 (2003).

    Google Scholar 

  50. R. A. Duine, B. W. A. Leurs, and H. T. C. Stoof, Phys. Rev. A 69, 053623 (2004).

    Google Scholar 

  51. N. P. Proukakis, J. Schmiedmayer, and H. T. C. Stoof, Phys. Rev. A 73, 053603 (2006).

    Google Scholar 

  52. N. P. Proukakis, Phys. Rev. A 74, 053617 (2006).

    Google Scholar 

  53. A. S. Bradley, P. B. Blakie, and C. W. Gardiner, J. Phys. B 38, 4259 (2005).

    Article  ADS  Google Scholar 

  54. A. S. Bradley and C. W. Gardiner, cond-mat/0602162.

  55. A. S. Bradley, C. W. Gardiner, and M. J. Davis, Phys. Rev. A 77, 033616 (2008).

    Google Scholar 

  56. C. N. Weiler, T. W. Neely, D. R. Scherer, A. S. Bradley, M. J. Davis, and B. P. Anderson, Nature 455, 948 (2008).

    Article  ADS  Google Scholar 

  57. D. M. Stamper-Kurn, H.-J. Miesner, A. P. Chikkatur, S. Inouye, J. Stenger, and W. Ketterle, Phys. Rev. Lett. 81, 2194 (1998).

    Article  ADS  Google Scholar 

  58. V. N. Popov, Sov. Phys. JETP 20, 1185 (1965); V. N. Popov, Functional Integrals and Collective Excitations (Cambridge Univ., Cambridge, 1987).

    Google Scholar 

  59. U. Al Khawaja, N. P. Proukakis, J. O. Andersen, M. W. J. Romans, and H. T. C. Stoof, Phys. Rev. A 68, 043603 (2003).

    Google Scholar 

  60. H. J. Miesner, D. M. Stamper-Kurn, M. R. Andrews, D. S. Durfee, S. Inouye, and W. Ketterle, Science 279, 1005 (1998).

    Article  ADS  Google Scholar 

  61. M. Köhl, M. J. Davis, C. W. Gardiner, T. W. Hänsch, and T. Esslinger, Phys. Rev. Lett. 88, 080402 (2002).

    Google Scholar 

  62. I. Shvarchuck, Ch. Buggle, D. S. Petrov, K. Dieckmann, M. Zielonkowski, M. Kemmann, T. G. Tiecke, W. von Klitzing, G. V. Shlyapnikov, and J. T. M. Walraven, Phys. Rev. Lett. 89, 270404 (2002).

    Google Scholar 

  63. S. Ritter, A. Öttl, T. Donner, T. Bourdel, M. Köhl, and T. Esslinger, Phys. Rev. Lett. 98, 090402 (2007).

    Google Scholar 

  64. M. Hugbart, J. A. Retter, A. F. Varon, P. Bouyer, A. Aspect, and M. J. Davis, Phys. Rev. A 75, 011602(R) (2007).

  65. M. J. Davis and C. W. Gardiner, J. Phys. B 35, 733 (2002).

    Article  ADS  Google Scholar 

  66. N. Prokof’ev and B. Svistunov, Phys. Rev. A 66, 043608 (2002).

    Google Scholar 

  67. A. Negretti, S. P. Cockburn, C. Henkel, N. P. Proukakis (2009, in preparation).

  68. A. A. Norrie, R. J. Ballagh, and C. W. Gardiner, Phys. Rev. Lett. 94, 040401 (2005).

    Google Scholar 

  69. R. G. Scott, D. A. W. Hutchinson, and C. W. Gardiner, Phys. Rev. A 74, 053605 (2006).

    Google Scholar 

  70. J. Ruostekoski and L. Isella, Phys. Rev. Lett. 95, 110403 (2005).

    Google Scholar 

  71. A. A. Penckwitt, R. J. Ballagh, and C. W. Gardiner, Phys. Rev. Lett. 89, 260402 (2002).

    Google Scholar 

  72. S. Choi, S. A. Morgan, and K. Burnett, Phys. Rev. A 57, 4057 (1998).

    Article  ADS  Google Scholar 

  73. M. Tsubota, K. Kasamatsu, and M. Ueda, Phys. Rev. A 65, 023603 (2002).

    Google Scholar 

  74. K. Kasamatsu, M. Tsubota, and M. Ueda, Phys. Rev. A 67, 033610 (2003).

    Google Scholar 

  75. N. P. Proukakis, N. G. Parker, C. F. Barenghi, and C. S. Adams, Phys. Rev. Lett. 93, 130408 (2004).

    Google Scholar 

  76. S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G. V. Shlyapnikov, and M. Lewenstein, Phys. Rev. Lett. 83, 5198 (1999).

    Article  ADS  Google Scholar 

  77. N. D. Mermin and H. Wagner, Phys. Rev. Lett. 22, 1133 (1966).

    Article  ADS  Google Scholar 

  78. P. C. Hohenberg, Phys. Rev. 158, 383 (1967).

    Article  ADS  Google Scholar 

  79. D. S. Petrov, M. Holzmann, and G. V. Shlyapnikov, Phys. Rev. Lett. 84, 2551 (2000).

    Article  ADS  Google Scholar 

  80. Z. Hadzibabic, P. Krüger, M. Cheneau, S. P. Rath, and J. Dalibard, New J. Phys. 10, 045006 (2008).

    Google Scholar 

  81. V. Schweikhard, S. Tung, and E. A. Cornell, Phys. Rev. Lett. 99, 030401 (2007).

    Google Scholar 

  82. T. P. Simula and P. B. Blakie, Phys. Rev. Lett. 96, 020404 (2006).

    Google Scholar 

  83. T. W. B. Kibble, J. Phys. A 9, 1387 (1976).

    Article  ADS  Google Scholar 

  84. W. H. Zurek, Nature (London) 317, 505 (1985).

    Article  ADS  Google Scholar 

  85. J. R. Anglin and W. H. Zurek, Phys. Rev. Lett. 83, 1707 (1999).

    Article  ADS  Google Scholar 

  86. N. Prokof’ev, O. Ruebenacker, and B. Svistunov, Phys. Rev. Lett. 87, 270402 (2001).

    Google Scholar 

  87. J. Borrill and M. Gleiser, Nucl. Phys. B 483, 416 (1996).

    Article  ADS  Google Scholar 

  88. C. Gagne and M. Gleiser, Phys. Rev. E 61, 3483 (2000).

    Article  ADS  Google Scholar 

  89. D. Wojtas, MSc. Thesis (Univ. of Canterbury, Christchurch, 2006).

  90. G. Lythe, L. Bettencourt, and S. Habib, Phys. Rev. D 60, 105039 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Cockburn.

Additional information

Original Text © Astro, Ltd., 2009.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cockburn, S.P., Proukakis, N.P. The stochastic Gross-Pitaevskii equation and some applications. Laser Phys. 19, 558–570 (2009). https://doi.org/10.1134/S1054660X09040057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X09040057

PACS numbers

Navigation