Skip to main content
Log in

A new technique to measure the phase characteristics of laser mirrors based on semiconductor heterostructures

  • Physics of Lasers
  • Published:
Laser Physics

Abstract

A reflection interferometer based on a thin metal film is proposed to measure the phase of the reflection spectrum of laser mirrors. The device is applied to the study of the phase characteristics of the all-semiconductor mirror which combines the functions of the saturable absorber and the dispersion compensator (all-in-one) in the Nd3+:KGd(WO4)2 laser operating in the ultrashort-pulse regime. The method provides improvement of spectral resolutions and an increase in the accuracy in the measurement of the phase characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Gires and P. Tournois, “Interferometre utilisable pour la compression d’impulsions lnmineuses modulee,” C. R. Acad. Sci. 258, 6112 (1964).

    Google Scholar 

  2. J. Kuhl and J. Heppner, “Compression of Femtosecond Optical Pulses with Dielectric Multilayer Interferometers,” IEEE Trans. Quantum Electron. 22, 182 (1986).

    Article  ADS  Google Scholar 

  3. R. Szipöcs and A. Köhazi-Kis, “Theory and Desing of Chirped Dielectric Laser Mirrors,” Appl. Phys. B 65, 115 (1997).

    Article  ADS  Google Scholar 

  4. F. X. Kärtner, M. Matoushek, T. Schuble, et al., “Design and Fabrication of Double-Chirped Mirrors,” Opt. Lett. 22, 832 (1997).

    Google Scholar 

  5. W. H. Knox, “Dispersion Measurements for Femtosecond-Pulse Generation and Applications,” App. Phys. B 58, 225 (1994).

    Article  ADS  Google Scholar 

  6. K. Naganuma and Y. Sakai, “Interferometric Measurement of Wavelength Dispersion on Femtosecond Laser Cavities,” Opt. Lett. 19, 487 (1997).

    ADS  Google Scholar 

  7. M. Beck and I. A. Walmsley, “Measurement of Group Delay with High Temporal and Spatial Resolution,” Opt. Lett. 15, 492–494 (1997); M. Beck, I. A. Walmsley, and J. D. Kafka, IEEE J. Quantum Electron. 27, 2074 (1991).

    Article  ADS  Google Scholar 

  8. Yu. V. Troitskii, Single-Frequency Lasing in Gas Lasers (Nauka, Novosibirsk, 1975) [in Russian].

    Google Scholar 

  9. Handbook of Optical Constants of Solid, Ed. by E. D. Palik (Academic, New York, 1985).

    Google Scholar 

  10. D. Kopf, G. Zhang, R. Fluck, et al., “All-in-One Dispersion Compensating Saturable Absorber Mirror for Compact Femtosecond Laser Sources,” Opt. Lett. 21, 486 (1996).

    Article  ADS  Google Scholar 

  11. S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information (Kluwer, Dordrecht, 1999).

    Google Scholar 

  12. D. S. Chemla and D. A. B. Miller, “Room-Temperature Excitonoc Nonlinear-Optical Effects in Semiconductor Quantum-Well Structures,” J. Opt. Soc. Am. 2, 1155–1172 (1985).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovalyov, A.A., Pchelyakov, O.P., Preobrazhenskii, V.V. et al. A new technique to measure the phase characteristics of laser mirrors based on semiconductor heterostructures. Laser Phys. 17, 478–481 (2007). https://doi.org/10.1134/S1054660X07040275

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X07040275

PACS numbers

Navigation