Skip to main content
Log in

Scale invariance of structural transformations in plastically deformed nanostructured solids

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

The scale-invariant mechanical behavior of a nanostructured solid is associated with plastic distortion as a major mechanism of nano- and microscale structural transformations. Active grain boundary sliding in a deformed material (microscale) within its highly developed planar subsystem (nanograin boundaries) causes a progressive increase in lattice curvature and plastic distortion of atoms which produces nonequilibrium vacant sites in the nanostructure. The motion of nonequilibrium point defects in nanostructure curvature zones provides conditions for noncrystallographic plastic flow, dissolution or dispersion of initial phases, and formation of nonequilibrium phases in a deformed material. The possibility of reversible structural phase transformations in the presence of high lattice curvature opens the way to greatly increase the fatigue life of surface nanostructured polycrystalline materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Golovnev, I.E., Golovneva, E.I., and Fomin, V.M., The Influence of a Nanocrystal Size on the Results of Molecular Dynamics Modeling, Comput. Mater. Sci., 2006, vol. 36, pp. 176–179.

    Article  Google Scholar 

  2. Golovnev, I.E., Golovneva, E.I., Mershievsky, L.A., Fomin, V.M., and Panin, V.E., Molecular Dynamics Study of Cluster Structure and Properties of Rotational Waves in Solid Nanostructures, AIP Conf. Proc., 2014, vol. 1623, pp. 171–174.

    Article  Google Scholar 

  3. Golovnev, I.F., Golovneva, E.I., and Fomin, V.M., The Influence of the Surface on the Fracture Process of Nanostructures under Dynamic Loads, Comput. Mater. Sci., 2015, vol. 97, pp. 109–115.

    Article  Google Scholar 

  4. Kiselev, S.P., Method of Molecular Dynamics in Mechanics of Deformed Solids, J. Appl. Mech. Tech. Phys., 2014, vol. 55, no. 3, pp. 470–493.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Panin, V.E., Egorushkin, V.E., Panin, A.V., and Chernyavskii, A.G., Plastic Distortion as a Fundamental Mechanism in the Nonlinear Mesomechanics of Plastic Deformation and Fracture of Solids, Phys. Mesomech., 2016, vol. 19, no. 3, pp. 255–268.

    Article  Google Scholar 

  6. Halpin, A., Johnson, J.M., Tempelaar, R., Murphy, R.S., Knoester, J., Jansen, T.L.C., and Miller, R.J.D., Two-Dimensional Spectroscopy of a Molecular Dimer Unveils the Effects of Vibronic Coupling on Exciton Coherences, Nat. Chem, 2014, vol. 6, pp. 196–201.

    Article  Google Scholar 

  7. Zhukovskii, M.S., Vazhenin, S.V., Maslova, O.A., and Beznosyuk, S.A., Theory and Computer Simulation of Nonequilibrium Quantum Electromechanical Processes of Material Nanostructuring, Barnaul: Izd-vo ASU, 2013.

    Google Scholar 

  8. Beznosyuk, S.A., Attophysics in Nano World, Youtube, 2016. https://www.youtube.com/watch?v=Y2sslFh05mY

    Google Scholar 

  9. Panin, A.V., Kazachenok, M.S., Kozelskaya, A.I., Hairullin, R.R., and Sinyakova, E.A., Mechanisms of Surface Roughening of Commercial Purity Titanium during Ultrasonic Impact Treatment, Mater. Sci. Eng. A, 2015, vol. 647, pp. 43–50.

    Article  Google Scholar 

  10. Alekhin, V.P. and Alekhin, O.V., Physical Regularities of Deformation of Material Surface Layers, Moscow: Izd-vo MSIU, 2001.

    MATH  Google Scholar 

  11. Panin, V.E., Sergeev, V.P., and Panin, A.V., Nanostructuring of Surface Layers ofStructural Materials and Nanostructural Coating Deposition, Tomsk: Izd-vo TPU, 2013.

    Google Scholar 

  12. Panin, V.E., Elsukova, T.F., Popkova, Yu.F., Pochivalov, Yu.I., and Sunder Ramasubbu, Effect of Structural States in Near-Surface Layers of Commercial Titanium on Its Fatigue Life and Fatigue Fracture Mechanisms, Phys. Mesomech., 2015, vol. 18, no. 1, pp. 1–7.

    Article  Google Scholar 

  13. Ultrasonic Treatment of Structural Materials, Panin, A.V., Ed., Tomsk: Izd. Dom TSU, 2016.

  14. Panin, V.E., Lider, A.M., Khairullin, R.R., et al., Generation of Anomalous High Density of Nonequilibrium Vacancies in Nanostructural Surface Layers ofVT6 Titanium Alloy Specimens, Mater. Sci. Eng., 2017 (in press).

    Google Scholar 

  15. Panin, V.E., Elsukova, T.F., and Popkova, Yu.F., The Role of Curvature of the Crystal Structure in the Formation of Micropores and Crack Development under Fatigue Fracture of Commercial Titanium, Dokl. Phys., 2013, vol. 58, no. 11, pp. 472–475.

    Article  ADS  Google Scholar 

  16. Benzerga, A.A. and Leblond, I.-B., Ductile Fracture by Void Growth to Coalescence, Adv. Appl. Mech., 2010, vol. 27, pp. 83–151.

    Google Scholar 

  17. Tekoglu, C., Hutchinson, J.W., and Pardoen, T., On Localization and Void Coalescence as a Precursor to Ductile Fracture, Phil. Trans. R. Soc. A, vol. 373, p. 20140121.

  18. Panin, V.E. and Egorushkin, V.E., Fundamental Role of Local Curvature of Crystal Structure in Plastic Deformation and Fracture of Solids, AIP Conf. Proc., 2014, vol. 1623, pp. 475–478.

    Article  Google Scholar 

  19. Surikova, N.S., Panin, V.E., Derevyagina, L.S., Lutfullin, R.Ya., Manzhina, E.V., Kruglov, A.A., Sarkeeva, A.A., Micromechanisms of Deformation and Fracture in a VT6 Titanium Laminate under Impact Load, Phys. Mesomech., 2015, vol. 18, no. 3, pp. 250–260.

    Article  Google Scholar 

  20. Sagaradze, V.V., Diffusion-Induced Transformations in Steels under Cold Deformation, MiTOM, 2008, vol. 639, no. 9, pp. 19–27.

    Google Scholar 

  21. Panin, V.E., Elsukova, T.F., Surikova, N.S., Popkova, Yu.F., and Borisyuk, D.V., Role of Rotational Deformation Modes in Fracture of High-Purity Aluminum Polycrystals at Low-Temperature Creep, Def. Razr. Mater., 2016, no. 12, pp. 2–9.

    Google Scholar 

  22. Tyumentsev, A.N. and Ditenberg, I.A., Structural States with High Curvature of the Crystal Lattice in Submicrocrystalline and Nanocrystalline Metallic Materials, Russ. Phys. J., 2012, vol. 54, no. 9, pp. 977–988.

    Article  Google Scholar 

  23. Landau, L.D. and Lifshitz, E.M., Theory of Elasticity, Oxford-New York: Pergamon Press, 1986.

    MATH  Google Scholar 

  24. Valiev, R.Z. and Alexandrov, I.V., Nanostructured Materials Obtained by Severe Plastic Deformation, Moscow: Logos, 2000.

    Google Scholar 

  25. Perez-Prado, M.T. and Zhilyaev, A.P., First Experimental Observation of Shear Induced HCP to BCC Transformation in Pure Zn, Phys. Rev. Lett, 2009, vol. 102, p. 175504.

    Article  ADS  Google Scholar 

  26. Edalati, K., Horita, Z., Yagi, S., and Matsubara, E., Allotropic Phase Transformation of Pure Zirconium by High-Pressure Torsion, Mater. Sci. Eng. A, 2009, vol. 523, pp. 277–281.

    Article  Google Scholar 

  27. Edalati, K., Matsubara, E., and Horita, Z., Processing Pure Ti by High-Pressure Torsion in Wide of Pressures and Strain, Metallurg. Mater. Trans. A, 2009, vol. 40, pp. 2079–2086.

    Article  ADS  Google Scholar 

  28. Ivanisenko, Y., Kilmametov, A., Roesner, H., and Valiev, R.Z., Evidence of α → ω ro Phase Transition in Titanium after High Pressure Torsion, Int. J. Mater. Res., 2008, vol. 99, pp. 36–41.

    Article  Google Scholar 

  29. Beznosjuk, S.F., Minaev, B.F., Dajanov, R.D., Muldachmetov, Z.M., Approximating Quasiparticle Density Functional Calculations of Small Active Clusters: Strong Electron Correlation Effects, Int. J. Quant. Chem., 1990, vol. 38, pp. 779–797.

    Article  Google Scholar 

  30. Troutskii, O.A., Electromechanical Effect in Metals, ZhETF, 1969, vol. 10, no. 1, pp. 18–22.

    Google Scholar 

  31. Okazaki, K., Kagawa, M., and Conrad, H., A Study of the Electroplastic Effect in Metals, Scripta Metal., 1979, vol. 13, pp. 473–477.

    Article  Google Scholar 

  32. Xu, Z.H., Tang, G.Y., Ding, F., Tian, S.Q., and Tian, H.Y., The Effect of Multiple Pulse Treatment on the Recrystallization Behavior of Mg-3Al-1Zn Alloy Strip, Appl. Phys., 2007, vol. 88, no. 2, pp. 429–433.

    Article  Google Scholar 

  33. Electromagnetic Fields Effect on the Structure and Characteristics of Materials, Baranov, Yu., Gromov, V., Tang, G., Eds., Novokuznetsk: Nov. Polyg. Center, 2009.

  34. Egorushkin, V.E. and Panin, V.E., Theory of Electroplasticity Effect, Phys. Solid State (in press).

  35. Cherepanov, G.P., On the Theory of Thermal Stresses in Thin Bounding Layer, J. Appl. Phys., 1995, vol. 78, pp. 6826–6832.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Panin.

Additional information

Original Russian Text © V.E. Panin, A.V.Panin, Yu.I. Pochivalov, T.F. Elsukova, A.R. Shugurov, 2017, published in Fizicheskaya Mezomekhanika, 2017, Vol. 20, No. 1, pp. 57-71.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panin, V.E., Panin, A.V., Pochivalov, Y.I. et al. Scale invariance of structural transformations in plastically deformed nanostructured solids. Phys Mesomech 20, 55–68 (2017). https://doi.org/10.1134/S1029959917010052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959917010052

Keywords

Navigation